
Multi-accelerator Neural Network Inference in
Diversely Heterogeneous Embedded Systems

Ismet Dagli
Computer Science Department

Colorado School of Mines
ismetdagli@mines.edu

Mehmet E. Belviranli
Computer Science Department

Colorado School of Mines
belviranli@mines.edu

Abstract—Neural network inference (NNI) is commonly used
in mobile and autonomous systems for latency-sensitive critical
operations such as obstacle detection and avoidance. In addition
to latency, energy consumption is also an important factor in such
workloads, since the battery is a limited resource in such systems.
Energy and latency demands of critical workload execution
in such systems can vary based on the physical system state.
For example, the remaining energy on a low-running battery
should be prioritized for motor consumption in a quadcopter.
On the other hand, if the quadcopter is flying through obstacles,
latency-aware execution becomes a priority. Many recent mobile
and autonomous system-on-chips embed a diverse range of
accelerators with varying power and performance characteristics
which can be utilized to achieve this fine trade-off between energy
and latency.

In this paper, we investigate Multi-accelerator Execution
(MAE) on diversely heterogeneous embedded systems, where sub-
components of a given workload, such as NNI, can be assigned
to different type of accelerators to achieve a desired latency
or energy goal. We first analyze the energy and performance
characteristics of execution of neural network layers on different
type of accelerators. We then explore energy/performance trade-
offs via layer-wise scheduling for NNI by considering different
layer-to-PE mappings. We finally propose a customizable metric,
called multi-accelerator execution gain (MAEG), in order to
measure the energy or performance benefits of MAE of a given
workload. Our empirical results on Jetson Xavier SoCs show that
our methodology can provide up to 28% energy/performance
trade-off benefit when compared to the case where all layers are
assigned to a single PE.

Index Terms—Heterogeneous systems, neural networks infer-
ence, autonomous systems, energy/performance trade-off

I. INTRODUCTION

Autonomous systems are becoming wide-spread over the
last decade as high performance computing (HPC), machine
learning (ML) and robotics advance further to provide the
required technical capabilities that full autonomy requires.
Safety-critical workloads on autonomous systems require
high-performance compute capability in order to meet hard-
deadlines for safe execution. In the meantime, the increase
in the computational demand results in higher energy con-
sumption, hence making the power consumption required for
computation comparable to the power needed by the mechan-
ical operation of a cyber-physical system (CPS), such as a
quadcopter drone. For this reason, computational resources
should be utilized based upon the desired energy/performance

trade-off (EPT) depending on the capabilities of the underlying
system.

Modern mobile and embedded SoCs, such as Qualcomm’s
Snapdragon Xilinx Zynq MPSoC and NVIDIA’s Xavier plat-
forms, employ a diverse range of domain specific accelerators
to perform critical tasks with low latency and power. For
example, NVIDIA’s Xavier SoC includes two specialized
programmable accelerators, NVIDIA Deep Learning Accel-
erator (DLA) and Progammable Vision Accelerator (PVA) in
addition to a graphical processing unit (GPU). In some cases,
a common operation such as the convolution operation can
be executed on more than one type of accelerator, e.g., DLA,
GPU and PVA on Xavier, with varying latency and power
characteristics. In such cases, a collaborative execution of the
underlying workload across different processing elements (PE)
could be needed to maximize or adjust the desired resource
efficiency and utilization. For example, while the GPU on
Xavier provides the best performance, the DLA on the same
platform is almost twice energy efficient for most NNI layers.
However, under a target energy budget, the most feasible
action might be to assign most latency sensitive layers to
GPU while leaving the layers who demonstrate best energy-
efficiency to the DLA. While such a distribution will not result
in either best performance or least energy usage, systems can
take advantage of a trade-off in between, to obtain a latency
lower than all-DLA execution even though the power budget
is not sufficient for all-GPU execution.

In mobile and autonomous systems, performance objec-
tives are dynamic and depend on the physical conditions.
Moreover, in most cases, such systems have limited system
resources, such as battery capacity, to meet the performance
objectives. Continuously changing dynamics of CPS make the
optimization problem more challenging. While adjusting the
frequency of the hardware through well-known techniques like
DVFS is a common practice, recent availability of alternative
accelerators in the same system for a given operation makes
another execution paradigm possible: Collaborative multi-
accelerator execution (MAE). Collaborative MAE targets to
explore varying EPT options to adapt the computing resource
usage into real-life physical requirements of the system and it
has been considered by a very limited number of studies only.
The work in [1] targets to distribute tasks across different types
of accelerators for better resource utilization under a given set

1

2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA)

978-1-6654-5877-1/21/$31.00 ©2021 IEEE
DOI 10.1109/RSDHA54838.2021.00006

20
21

 IE
EE

/A
C

M
 R

ed
ef

in
in

g
Sc

al
ab

ili
ty

 fo
r D

iv
er

se
ly

 H
et

er
og

en
eo

us
 A

rc
hi

te
ct

ur
es

 W
or

ks
ho

p
(R

SD
H

A
) |

 9
78

-1
-6

65
4-

58
77

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
R

SD
H

A
54

83
8.

20
21

.0
00

06

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:40:19 UTC from IEEE Xplore. Restrictions apply.

of constraints. Houssam-Eddine et al. [2] proposed a real-time
application model to analyze and run alternatives of tasks on
heterogeneous hardware to explore preemptive scheduling of
tasks. However, these studies consider only performance and
disregard energy consumption of the resulting schedules.

Our contribution: In this paper, we consider spanning
the execution of NNI across different type of accelerators in
a diversely heterogeneous system and our goal is to explore
the trade-off between execution time or energy consumption.
We explore the execution of various NNI workloads on a
heterogeneous system by partitioning the layers among several
accelerators. Each layer will be assigned to PEs based on their
capabilities of performing better for a target EPT. This paper
makes the following contributions:

• We show that there exists a trade-off between perfor-
mance and energy consumption. This trade-off can be
optimized by assigning and executing several layers on
different processing units.

• We build a metric, called multi-accelerator execution gain
“MAEG”, to represent the trade-off between energy and
power. This metric represents the trade-off between two
accelerators based on time and energy benefits of them.

• We present and analyze the results of our design space
exploration (DSE) of the execution of GoogleNet network
on DLA and GPU of Xavier AGX architecture with
varying layer distributions.

II. BACKGROUND

Nvidia’s Xavier AGX and NX SoCs pack three different types
of programmable accelerators, a CUDA programmable GPU,
a programmable vision accelerator (PVA) and a deep learning
accelerator (DLA), along with powerful tools to measure
performance and energy. In this study, we focus on exploring
multi-accelerator execution of NNI on the DLA and the GPU
of Xavier platform.

A. TensorRT
TensorRT [3] is a framework consisting of a NNI optimizer
and runtime to achieve high-performance on various platforms.
TensorRT engine builder applies pre-runtime optimizations
such as proper layer fusing, precision adjustment and mem-
ory requirement reduction. The engine builder tries multiple
variations and combinations of layers in the given network
and finds an optimal configuration that results in improved
latency, throughput and memory footprint for the underlying
architecture.

B. NVIDIA Deep Learning Accelerator
DLA [4] is an open-source domain specific accelerator hard-
ware for neural network inference. The architecture internally
embeds an internal pipeline of layer-specific engines for con-
volution, activation, pooling and reshape. NVIDIA Xavier SoC
embeds a small configuration of DLA, named as NVDLA,
capable of 11.4 TOPS int8 or 5.7 TFLOPS FP16 performance.
While performance of DLA in Xavier is less than half of the
GPU in this architecture, power consumption is less than 1/4th

of the GPU for most operations. DLA in Xavier SoC can
be only used via the TensorRT library and there exist some
generic and layer-wise restrictions. Specifically, at the time this
paper is written, TensorRT does not provide execution of some
uncommon layers,i.e. LeakyReLU layer and the supported
batch sizes are limited to the range between 1 to 32. TensorRT
allows developers to specify the GPUFallBack option to map
the layers that cannot be run on the DLA to the GPU. Since
the fall-backs require all the transient data belonging the
previous layer to be flushed back to the main system memory,
layer transitions between DLA and GPU should be carefully
programmed to prevent performance degradation.

III. CONSIDERATIONS FOR MULTI-ACCELERATOR
EXECUTION

A. Motivation
In diversely heterogeneous SoCs, an operation (i.e., a task or
kernel in an application) can often be accelerated via different
domain-specific accelerators (DSA) with varying performance,
energy, and latency characteristics. For example, a convolution
operation can be set to run on the CPU, GPU, programmable
vision accelerator (PVA), or deep learning accelerator (DLA).
The DSA that would provide the optimal execution time and/or
energy efficiency of the convolution operation depends both
on the accelerator capabilities, and on the properties of the
convolution operation such as matrix size and filter dimen-
sions. Depending on the dynamic requirements of the system
(e.g., high throughput, low energy) and runtime parameters
of the operation, such as the number of objects and image
size, the programmer (or the system scheduler) can be capable
of choosing to map different operations to different DSAs
throughout the execution of an application.

As a result, the flexibility to be able to run an operation on
different DSAs for different performance and power targets
enables collaborative execution where different DSAs are
used for different operations in a workload. Alternatively,
collaborative execution of popular workloads, such as NNI,
on multiple DSAs is relatively a new and unexplored scheme,
which has the potential to provide unique benefits for budgeted
execution scenarios. To demonstrate the feasibility of such
executions, we have designed preliminary results from an
experiment that is depicted in Table I. Our results show that
distributing the workloads (i.e. layers) of a neural network
inference across a GPU and a DLA collaboratively could pro-
vide a customizable trade-off between energy and performance

Layer Distribution Latency(ms) Energy(j)
All-GPU 2.99 20.08

111 (GPU) - 29 (DLA) 3.46 19.15
99 (GPU) - 41 (DLA) 3.75 15.80
52 (GPU) - 88 (DLA) 4.2 13.97

11 (GPU) - 129 (DLA) 4.81 11.93
ALL-DLA 5.52 10.05

TABLE I: Latency and energy results obtained by GPU, DLA
and collobarative execution of DLA and GPU with potential
transition points among layers

2

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:40:19 UTC from IEEE Xplore. Restrictions apply.

on NVIDIA’s Xavier NX system. More specifically, as more
layers of the network are executed on the DLA and the rest are
run on the GPU, the energy consumption (Joules per image)
can be significantly improved with some adverse impact on
the latency (Seconds per image).

B. Considerations
Building a generalized methodology for EPT-aware multi-
accelerator execution requires the following to be considered:
1) Execution time and energy characterization
Common PEs such as CPU, GPU, FPGA, and ASIC have
different architectural designs and constraints which limit the
workloads that can be run depending on their requirements,
such as memory space demands. For heterogeneity-aware
assignment of different layers, characteristic features of layers
must be either measured or predicted. Recent performance
analysis of neural networks on SoC [5] shows communication-
computation ratio depending on several parameters, which
are challenging to detect and optimize during compile time.
Kernel size and type are two essential factors that affect
the runtime and energy consumption of an operation. Layers
on neural networks are mostly based on matrix operations,
therefore height and width of the input matrix have an affect
on the execution time. Other parameters such as activation
size, activation function, and the number of parameters also
affect the complexity of different layer types.
2) Inter-PE data sharing and transfer
The communication between PEs in a collaborative MAE
scenario must be considered carefully to minimize the extra
R/W overhead while achieving the EPT goals. Transient values
are often used to represent disposable memory spaces that are
only needed temporarily and they are often marked as not to
be serialized to disk or flushed to the memory. By default,
TensorRT engine optimizer treats the tensors passed between
layers as transient unless the layer is marked as an output
layer. When multiple accelerators are used interchangeably
in a neural network, depending upon the point where the
execution transitions between two accelerators, there will be
additional writes and reads by these two OPs due to usage of
non-transient data.
3) Sharing the load across PEs
Load balance must be considered as well in order to maximize
the overall efficiency of the system since PEs have different
computing power capabilities and the tasks include several
subtasks with different complexities. Different types of PEs
have various capabilities for running the kernels depending
on their operation type and data size. In order to obtain
maximum performance out of available PEs, loads must be
distributed among PEs by considering estimated/expected ex-
ecution time and energy consumption. This is a well-studied
mapping problem, which is NP-complete [6], and existing
solutions [7], [8] employ heuristics or dynamic scheduling
techniques to manage load distribution across PEs. Otherwise,
unequal distribution of workloads across PEs will possibly
result in an overall slowdown of the system.

IV. CASE STUDY: GPU+DLA COLLABORATIVE
EXECUTION FOR CONVOLUTIONAL NEURAL

NETWORK INFERENCE

In this section, we present our exploration of collaborative
MAE over a case study. We first investigate the MAE transition
point (MTP), where the execution flow in the NNI switches
between DLA and GPU. We then provide a customizable EPT
parameter that will help schedulers to find an optimal place
for the transition point.

A. Setup
In this study, we use Nvidia’s Jetson Xavier AGX and NX
SoCs since they embed one performance efficient (i.e., GPU)
and two energy efficient (i.e., DLA) accelerators together with
access to the same shared DRAM memory. We limit our
experiments to one DLA because TensorRT does not allow
to use multiple DLAs for the execution of the same neural
network. At the time this paper is written, the latest version
of JetPack provides the necessary setup for our experiments,
which are Ubuntu OS 18.04, Cuda 10.2, TensorRT 7.1.3,
OpenCV 4.1.1. We use TensorRT engine to optimize the pre-
trained models collected from Dusty-nv repository [9]. We run
our experiments on a CNN model, GoogleNet [10], whose all
layers can be executed on DLA. This allows us to flexibly
explore all possible layer to PE assignments, without TensorRT
engine falling back to GPUs on DLA assigned layers; hence
we avoid unwanted layer transitions between the GPU and
DLA.

Transitions from the GPU to DLA can only be programmed
manually by the setDeviceType TensorRT API call. Transitions
back to GPU from DLA happens when a planned DLA
execution falls back to GPU or setDeviceType is not set for
a particular layer. All layers in a network can be also set to
execute DLA globally by setting the useDLACore parameter
for the TensorRT runtime executable, trtexec.

B. Factors Affecting the Selection of MAE Transition Point
We explore the MAE trade-off by investigating the selection of
the MAE Transition Point (MTP) where the execution flow is
handled from one accelerator to another. For the simplicity of
our analysis, we assume that (1) the execution begins in either
GPU or DLA, (2) there is only one MTP in the execution of
an NNI, and (3) DLA and GPU are not used at the same time.
1) Overhead of MAE Transition
Layer transition between PEs requires moving layer in-
put/output data across the memory subsystems of both PEs. In
Jetson Xavier SoCs, for example, the DLA has its own private
buffer, called convolution buffer [4]. While performing the
execution of a group of layers in DLA, if the execution is to be
transitioned into the GPU, this process will require saving the
state of the convolution buffer in DLA into the shared memory
of the SoC (i.e., DRAM). Once the output of the last DLA
layer is visible by other PUs in the SoC, the GPU execution
for the remainder of the layers begins by the CuDNN kernel
call inserted by the TensorRT engine. Additionally, after the
transition, the cold cache misses caused by the initial memory

3

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:40:19 UTC from IEEE Xplore. Restrictions apply.

11 25 40 52 69 82 99 111 1250 140

Fig. 1: Execution time and energy consumption comparison on GoogleNet with different workload assignment across PEs,
making the transition from GPU to DLA after the layers with the numbers shown in the X-axis. The data points at X=99,
corresponds to the inter-accelerator transition at layer number 99, which means that layers 1-99 are executed on GPU and
remaining layers (100-140) are executed on DLA.

instructions executed by the GPU will result in an implicit
warm-up period. This period will slow down the execution of
layers for an uncertain amount of time, depending on the size
of the cache, the number of ports, and the available memory
bandwidth.
2) The location of the MAE Transition Point
In convolutional neural networks (CNN), core layers, such
as Convolution layers, are frequently followed by specific
operations such as ReLU and Pooling. Such group of layers are
often combined as a bigger group of layers to reduce memory
copy and access overheads [11]. In our case, this optimization
is performed automatically during TensorRT engine building
step. However, layers cannot be merged if the transition
point between accelerators is picked without considering the
optimized groups of layers. The resulting slowdown is even
higher when the transition overhead is also added to the
cost of missing optimization opportunity. Additionally, many
neural network architectures embed some layers producing a
significantly reduced amount of data as output, which is often
a result of repetitive pooling operation calls. If the transition is
picked after the output data is reduced, the data that needs to
be transferred into the next layer as input will also be minimal.
Thus, the overhead of PU-transition will be minimized.

C. MAE Transition Point Exploration
To observe the effects for MTP on execution time and total en-
ergy consumption we performed a design-space exploration by
applying a single transition between from GPU to DLA after
each of the 140 layers in GoogleNet [10]. We have obtained
the execution times via trtexec and energy consumption by
integrating the PU-specific power consumption values reported
by tegrastats call.

Fig. 1 shows the resulting execution time and energy con-
sumption corresponding to different transition points we tried,

which are shown on the X-axis. For example, the two data
points at X = 52 correspond to the execution where layers 1-
to-52 are assigned to GPU and the layers 53-140 are assigned
to DLA. Overall, the model tends to run faster and consume
more energy as more layers are running on GPU. When all
layers are executed on DLA (i.e., X = 0) the execution time is
longest but the energy consumption is lowest. Execution time
drops almost 50% when all layers are executed on GPU (i.e.,
X = 140), but energy consumption increases almost 100%.

There are some data points in the experiment where running
a few more layers on DLA results in less energy consumption
and less execution time. For example, when two transition
points at X = 98 and X = 99 are compared, we observe
31% less energy consumption and 12% less execution time
even though the model at X = 99 executes 1 additional layer
on DLA compared to the former model. In this particular
example, when X = 98, transition occurs in the middle of
an inception layer [10], and it prevents efficient fusion of
this group of layers. Moreover, during such transitions, our
offline profiling shows that extra input and output reformatting
layers are added by TensorRT engine builder in order to
perform data serializing operations. Therefore, transitions at
these points show a considerable increase in both execution
time and energy consumption. On the other hand, there are
some other set of transitions, such as X = 99 and X = 100,
which corresponds to relatively close energy and time values.
Since no fusion optimization operation and no input/output
data conversion between layers are performed between such
layers, the results for time and energy do not significantly
change.

D. Standalone Characterization of Group of Layers

In GoogleNet [10] architecture, inception layer is proposed
as a combination of layers with different sliding window

4

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:40:19 UTC from IEEE Xplore. Restrictions apply.

Layer Groups

R
at

io
 o

n
G

P
U

 o
ve

r N
V

D
LA

0.00

0.25

0.50

0.75

1.00

0-1
0

11
-24

25
-39

40
-52

53
-68

69
-81

82
-98

99
-11

0

11
1-1

24

12
5-1

40

Time Energy Power

Fig. 2: The time, energy and power ratios of DLA executions
over GPU when different layer groups are separately executed
and measured for time, energy, and power.

sizes. Inception layers are often repeated multiple times with
varying parameters on matrix and convolutional filter sizes. To
better understand how layers perform when they are executed
on DLA or GPU separately (i.e., not collaboratively), we
used IProfiler, an API call on TensorRT, to characterize their
execution time and energy consumption. However, to simplify
our experiments, we grouped 140 layers into 10, where each
group contains an inception layer and associated layers which
are added for loss mitigation. The absolute execution time and
energy values for the layer groups are given in Table II. Using
the absolute values in Table II, we also derive the relative time,
energy and power consumption ratios of DLA, when GPU
values are taken as the baseline, and illustrate the comparison
in Fig. 2. It is important to note that we do not consider
transitions in this subset of experiments, and rather focus on
individual characterization of group of layers on DLA and
GPU separately.

The results for the execution time and energy when the lay-
ers are grouped give additional insights. The DLA performed
faster while executing layers towards the end of the network,
since the kernel sizes got smaller. GPU is capable of exploiting
more data parallelism with larger kernels, and the small buffers
in DLA are more effective when the matrix sizes are smaller.
More interestingly, there is a clear trade-off relationship be-
tween time and energy results on the comparison of results on
DLA vs. GPU: GPU consumes less energy when compared to
DLA towards the end of the layer groups whereas executions

Layer Groups DLA Time GPU Time DLA Energy GPU Energy
0-10 1.89310 0.783052 2.8813120 3.6161341
11-24 0.51206 0.26987 0.62317702 0.88437388
25-39 0.75149 0.36954 1.0175226 1.34292507
40-52 0.48472 0.24493 0.58505933 0.79261807
53-68 0.49370 0.27547 0.59392819 0.83247336
69-81 0.44470 0.24087 0.53320357 0.76381145
82-98 0.57197 0.36504 0.69266553 1.22690952
99-110 0.48300 0.29495 0.55062285 0.94533365
111-124 0.39439 0.23978 0.47485639 0.75196764
125-140 0.42973 0.29452 0.52127176 0.849399717

TABLE II: Latency(ms) and energy(J) results obtained by
standalone execution of different layers on GPU and DLA
separately.

on GPU tend to proportionately last longer.

E. Leveraging EPT with Newly Proposed MAEG Metric
We show the relationship between time and energy over GPU
and DLA in Sections IV-C and IV-D. Since there is a non-
linear relationship between execution time and energy con-
sumption, finding optimized schedules based on two different
variables can be challenging. Therefore, for a given transition
point, we propose a metric called multi-accelerator execution
gain, MAEG, which represents the trade-off relation between
energy and time as a single, optimizable value. In this work,
we construct MAEG based on collaborative execution on two
accelerators only, but we plan to generalize it for arbitrary
number of accelerators.

MAEG = α× TimeGain+ β × EnergyGain

T imeGain =
|Timeacc 1 − TimeMAE |
|Timeacc 1 − Timeacc 2|

EnergyGain =
|Energyacc 2 − EnergyMAE |
|Energyacc 1 − Energyacc 2|

1 = α+ β

The MAEG depends on time and energy gains which are
calculated by finding the ratio of time or energy on a given
transition point over a single execution result on both acceler-
ators. More specifically, time gain is calculated by differences
in our multi-accelerator executions and a single execution on
an accelerator over differences in both single executions on
both accelerators. Since the energy consumption tends to be
less on the other device, we define the similar formula as a
energy gain but we take the low-power accelerator as a base on
the dividend of the formula. Both results are divided by both
ends of the energy/time spectrum, which are the differences
in energy/time when the entire network is run separately on
both accelerators. α and β values are customizable parameters
in order to dynamically modify the significance of time and
energy factors so that the user can weigh the importance of
either factors into their schedules as needed.

To show how MAEG can be used to explore the benefits
of multi-accelerator execution, we perform an experiment and
the results are shown in Fig. 3. In this experiment, we increase
the batch size (as previously shown by [12] to be increasing
the total throughput) and try to find an optimal transition point
for each batch size. The MAEG values shown in the Y-axis are
calculated by taking α = 0.5 and β = 0.5. The results provide
optimal transition based on the highest MAEG values for each
set of batch sizes. The trendline across various batches tends
to behave similarly as several MAEG results, depending on the
batch numbers. The results show that the near-optimal multi-
accelerator execution with MAEG parameters α = 0.5 and
β = 0.5 for batch numbers can be obtained at batch = 4. This
is a general case because DLA shows best performance/energy

5

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:40:19 UTC from IEEE Xplore. Restrictions apply.

Transition Points from GPU to DLA

M
A

E
G

0

50

100

150

10 24 39 52 68 81 98 110 124

16 Batches 8 Batches 4 Batches 2 Batches 1 Batch

Fig. 3: MAEG results by batch numbers. The total gain is calculated by using α = 0.5 and β = 0.5 values. X-axis indicates
where the transition from GPU to DLA is performed.

efficiency with lower batch values. Alternatively, one can use a
similar analysis to find other reasonable trade-offs for different
batch values. For example, for batch size 8, setting the GPU
to DLA transition point to layer 39 would provide a decent
trade-off between energy and performance, if they are equally
important.

V. ADDITIONAL RELATED WORK

A popular method to improve latency per energy efficiency of
neural networks is to perform automated hardware mapping
for DNNs [13]. Kao et al. take tiling, ordering, and parallelism
into account by using genetic algorithms. Energy-efficient
applications mostly favor heterogeneous architectures. Some
energy-optimized scheduling on heterogeneous environments
are performed mainly for real-time tasks [14]–[16]. The main
goal of such works is to minimize energy consumption as
much as possible by considering the real-time latency con-
straints. Yang et al. [17] provides a framework in deep learning
applications by considering errors and data for both energy
efficiency and latency on CPUs and GPUs of Jetson Tx2
devices. A study [18] on the behavior of popular CNNs
presents a workload characterization performed for various
energy-efficient implementations on CPUs and GPUs. While
many focus on how to improve energy efficiency, Martin
et al [19] generates an estimation method on the degree of
energy consumption for machine learning applications. They
also classify the existing energy consumption methods for
general and machine learning applications. However, none of
these work consider time and energy as a trade-off metric in
multi-accelerator systems and they merely focus on improving
energy aspects of the DNNs on single accelerator systems.

To increase the performance of neural networks, some re-
searchers have primarily focused on data parallelism, splitting
the data between available devices. The performance of collab-
oration of CPU and GPU can beat the performance of a single
PE [20], [21]. If the workload between them is well-distributed
depending on the data size, a higher speed-up is achievable.
Heterogeneous systems provide better performance and lower
energy consumption when kernels are well-optimized for the

target processing units [22]. Using FPGAs along with CPU and
GPU for the same operation improves the results on energy
consumption and energy-delay. Model and data parallelism
techniques are integrated into a hybrid parallelism method so
that the communication bottleneck is minimized [23]. This
work applies a dynamic algorithm search as a partition method
for layers between accelerators. However, these works do not
consider optimization opportunities, such as layer fusion, and
energy as a metric while applying workload distribution among
PEs.

Using multiple accelerators for high performance NNI has
recently been investigated by a few studies only. PREMA [24]
provides a priority-based NNI execution technique to enable
preemptive execution. Scheduling the workloads with a layer-
aware method for multiple accelerators is explored in [25]. Yeh
et. al [26] proposes increasing throughput by considering hard-
deadlines of the overall system with a latency-aware method
However, these works only consider improving execution time
and do not consider energy in their optimizations.

VI. CONCLUSION

This study provides an exploration of energy/performance
trade-off on DNN models in diversely heterogeneous mobile
SoCs. We show that different accelerators in the system show
varying energy/performance benefits for different set of layers
in a neural network. We investigate multi-accelerator execution
by exploring the resulting effects of different inter-accelerator
transition points. We also introduce a metric, called MAEG,
to represent the energy/performance trade-off between two
accelerators, as a single optimizable value.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. CCF-2124010.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF.

6

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:40:19 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. Cazorla,
“Generating and exploiting deep learning variants to increase heteroge-
neous resource utilization in the nvidia xavier,” in ECRTS, 2019.

[2] Z. Houssam-Eddine, N. Capodieci, R. Cavicchioli, G. Lipari, and
M. Bertogna, “The hpc-dag task model for heterogeneous real-time
systems,” IEEE Transactions on Computers, pp. 1–1, 2020.

[3] NVIDIA, “Tensorrt,” 2021. [Online]. Available:
https://developer.nvidia.com/tensorrt

[4] “Nvidia deep learning accelerator,” http://nvdla.org/, (Accessed on
09/17/2021).

[5] A. Karbachevsky, C. Baskin, E. Zheltonozhskii, Y. Yermolin, F. Gabbay,
A. M. Bronstein, and A. Mendelson, “Early-stage neural network
hardware performance analysis,” Sustainability, vol. 13, no. 2, 2021.
[Online]. Available: https://www.mdpi.com/2071-1050/13/2/717

[6] D. Fernandez-Baca, “Allocating modules to processors in a distributed
system,” IEEE Transactions on Software Engineering, vol. 15, no. 11,
pp. 1427–1436, 1989.

[7] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Ant
colony heuristic for mapping and scheduling tasks and communications
on heterogeneous embedded systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 29, no. 6, pp.
911–924, 2010.

[8] Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,”
Information Sciences, vol. 270, pp. 255–287, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002002551400228X

[9] D. Franklin, “Deploying deep learning,” https://github.com/dusty-
nv/jetson-inference, 2016-2019.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1–9.

[11] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy,
“TVM: an automated end-to-end optimizing compiler for deep
learning,” in 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018, A. C. Arpaci-Dusseau and G. Voelker, Eds.
USENIX Association, 2018, pp. 578–594. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/chen

[12] N. Keskar, J. Nocedal, P. Tang, D. Mudigere, and M. Smelyanskiy, “On
large-batch training for deep learning: Generalization gap and sharp min-
ima,” 2017, 5th International Conference on Learning Representations,
ICLR 2017.

[13] S. C. Kao and T. Krishna, “Gamma: Automating the hw mapping of
dnn models on accelerators via genetic algorithm,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2020,
pp. 1–9.

[14] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, and
G. Lipari, “Energy-efficient scheduling for moldable real-time
tasks on heterogeneous computing platforms,” Journal of Systems
Architecture, vol. 74, pp. 46–60, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S138376211730019X

[15] Y. Gao, L. Han, J. Liu, Y. Robert, and F. Vivien, “Minimizing energy
consumption for real-time tasks on heterogeneous platforms under
deadline and reliability constraints,” Inria - Research Centre Grenoble
– Rhône-Alpes, Research Report RR-9403, Apr. 2021. [Online].
Available: https://hal.inria.fr/hal-03202996

[16] L. Zhou, L. N. Bhuyan, and K. K. Ramakrishnan, “Gemini: Learning
to manage cpu power for latency-critical search engines,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 637–349.

[17] B. Yang, X. Cao, C. Yuen, and L. Qian, “Offloading optimization in
edge computing for deep-learning-enabled target tracking by internet of
uavs,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9878–9893,
2021.

[18] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy
efficiency of deep convolutional neural networks on cpus and gpus,”
in 2016 IEEE International Conferences on Big Data and Cloud
Computing (BDCloud), Social Computing and Networking (SocialCom),
Sustainable Computing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom), 2016, pp. 477–484.

[19] E. Garcı́a-Martı́n, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation
of energy consumption in machine learning,” Journal of Parallel and
Distributed Computing, vol. 134, pp. 75–88, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731518308773

[20] M. A. Guzman, R. Nozal, R. Tejero, M. Villarroya-Gaudó, D. S. Gracia,
and J. L. Bosque, “Cooperative cpu, gpu, and fpga heterogeneous
execution with enginecl,” The Journal of Supercomputing, vol. 75, pp.
1732–1746, 2019.

[21] R. Nozal, J. L. Bosque, and R. Beivide, “Enginecl: Usability and
performance in heterogeneous computing,” Future Gener. Comput. Syst.,
vol. 107, pp. 522–537, 2020.

[22] P. Pandit and R. Govindarajan, “Fluidic kernels: Cooperative execution
of opencl programs on multiple heterogeneous devices,” in CGO ’14,
2014.

[23] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Hypar: Towards
hybrid parallelism for deep learning accelerator array,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 56–68.

[24] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling algo-
rithm for preemptible neural processing units,” 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp.
220–233, 2020.

[25] Y. H. Oh, S. Kim, Y. Jin, S. Son, J. Bae, J. Lee, Y. Park, D. U. Kim,
T. J. Ham, and J. W. Lee, “Layerweaver: Maximizing resource utilization
of neural processing units via layer-wise scheduling,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2021, pp. 584–597.

[26] T. T. Yeh, M. D. Sinclair, B. M. Beckmann, and T. G. Rogers, “Deadline-
aware offloading for high-throughput accelerators,” in 2021 IEEE In-
ternational Symposium on High-Performance Computer Architecture
(HPCA), 2021, pp. 479–492.

7

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:40:19 UTC from IEEE Xplore. Restrictions apply.

