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Abstract
Computing systems are evolving to be more ubiquitous, het-
erogeneous, and dynamic. Many emerging domains, such
as Internet of Things (IoT), federated learning, and smart
buildings, rely on a diverse edge-to-cloud continuum where
the execution of applications spans various tiers of systems
with significantly different computational capabilities. Com-
puting resources in each tier, such as processing units inside
of in-the-field edge devices and high-performance servers in
datacenters, are handled in isolation due to scalability and
resource segregation. This practice results in task mappings
limited to only a subset of all available processing units,
preventing an efficient overall utilization of the system.
In this paper, we propose a holistic approach to capture

diverse computational characteristics of edge-cloud systems
with arbitrary topologies and to efficiently manage compu-
tational resources with the whole continuum in the scope.
Our approach is built upon a multi-layer graph-based

hardware (HW) representation and a modular performance
modeling interface that can capture interactions and
interference between computational resources in the system.
We introduce an orchestrator mechanism that leverages the
graph-based HW representation to hierarchically locate
processing units to which a given set of tasks can be mapped
while respecting the isolation between the computational
tiers of an edge-cloud system. We demonstrate the utility of
our approach on two distinct edge-cloud systems deployed
in the field, improving the latency up to 47% over the best
baseline with less than 2% scheduling overhead and reducing
the average prediction error rate from 27.4% to 3.2%.
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1 Introduction
Computing in-the-field (i.e., on the edge) is becoming more
demanding. The increasing need for on-device intelligence
results in a wider deployment of system on chips (SoC),
embedding a variety of processing units (PU) and domain-
specific accelerators (DSA), to efficiently run applications
with minimal power and/or latency [69, 73]. Often, edge de-
vices also rely onmore powerful servers to store the data they
collect [61], offload some of their computation [54] or syn-
chronize with other devices [81]. In many emerging domains
such as federated learning, autonomous systems, and AR/VR
systems, the execution of the workloads spans numerous
nodes with varying degrees of computational power (i.e., het-
erogeneous), including edge devices and servers (or “cloud").

Over the last two decades, resource management for HPC
systems [24, 57, 63] and data centers [67, 71, 72] has been
broadly studied. In the meantime, edge platforms became
more accelerator-rich, powerful, and efficient [38]. However,
as the execution of emerging workloads evolved to span com-
puting systems with vastly heterogeneous computational
tiers, which we refer to as diversely scaled edge-cloud sys-
tems (DECSs), existing approaches fail to provide a scalable
resource modeling and management solution that can holisti-
cally capture the edge-cloud system’s performance accurately
and adaptively (see § 2 for details).
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Specifically, DECSs have the following key characteristics
which present unique challenges when considered together:
(1) High degree of computational heterogeneity: Computa-
tional nodes (e.g., edge devices and cloud servers) in a DECS
constitute a multi-tiered computing topology. The nodes in
each tier embed multiple PUs that have significantly diverse
computational capabilities compared to the other nodes in
the same and different tiers. (2) Segregated/isolated computa-
tional environments: Computational resources are segregated
into various clusters to abstract or group nodes based on their
functionality or isolation requirements (e.g., mesh-IoT [40],
function-as-a-service [45] and cloud gaming [12]). For ex-
ample, the internal architecture and operation of the servers
in the cloud are often invisible to edge devices and vice
versa. (3) Dynamically changing computational capabilities:
The performance of the system varies over time depending
on the newly added or removed nodes and the slowdown
caused by shared resource usages across various tiers.

In this paper, we proposeHARNESS,Holistic andAdaptive
Resource maNagement for diversely scaled heterogeneous
Edge-Cloud SyStems. HARNESS leverages a multi-layer
graph-based HW representation to enable flexible and scalable
abstractions of the computational resources in DECSs. The
graph-based HW approach champions a modular strategy,
allowing the incorporation of existing performance models,
while still capturing interactions at higher levels across the
system. HARNESS deploys a multi-tiered Orchestrator (ORC)
mechanism to hierarchically locate resources a task could
be mapped to, while taking the slowdown caused by shared
resource usages at different tiers into account. ORCs enable
scalable resource management across isolated/segregated
computational node clusters without the need for any group
to have complete performance models and task-assignment
knowledge of the other group. ORCs utilize an internal Tra-
verser mechanism to predict the shared resource slowdown
for a given mapping between a set of tasks and target PUs.
Our slowdown modeling approach uniquely decouples the
standalone performance of a component and the slowdown
caused by shared resource usage; hence, simplifying the per-
formance modeling and increasing the prediction accuracy.
Overall, HARNESS, to the best of our knowledge, is the

first framework to enable a holistic resource management ap-
proach utilizing all computational resources in heterogeneous
edge-cloud-based systems while taking multi-tier interfer-
ence and dynamic HW topology changes into account. Our
work makes the following contributions:
• We present a graph-based multi-layer HW represen-
tation scheme that is capable of expressing arbitrary
topologies of HW components and their interactions in
DECSs.
• We devise a Traverser logic to automate the process of
predicting the performance of a given set of tasks on a

target set of PUs while also accounting for the shared
resource slowdown among concurrent tasks.
• We design a multi-tiered, decentralized Orchestrator
mechanism that scalably finds a mapping of a task
to a local or remote PU while satisfying the task’s
constraints. Our proposed ORC mechanism uniquely
supports segregated resource clusters, which is common
in DECSs.
• We demonstrate the utility of HARNESS on DECSs
from two different disciplines that we deploy in the
field. Our experiments show a latency improvement
of up to 47% and a reduction in the prediction error
rate from 27.4% to 3.2% with less than 2% scheduling
overhead.

2 Related Work
Performance modeling for diverse heterogeneity: Un-
derstanding and modeling the performance of DSAs in het-
erogeneous systems have been widely studied [4, 18, 19, 34,
35, 47, 48, 80, 82]. In these systems, interference factors that
adversely affect performance include shared caches [6, 41],
CPU sharing [16, 21, 51], GPUmulti-tenancy [26, 33, 65], and
multi-tasked DSAs [2, 36, 79]. However, all these works study
a shallow, i.e., single-tier, case of heterogeneity: They assume
either there is a single type of DSA or a single flat layer of in-
teraction between DSAs. In DECSs, however, computational
nodes and the DSAs are connected in arbitrary topologies
withmulti-tiered hierarchies and they are often abstracted be-
hind segregated clusters. Existing approaches are not flexible
and generalizable enough to capture multi-tiered interactions
between diversely heterogeneous PUs in a DECS.
Shared resource slowdown: Recent stud-

ies [17, 27, 53, 78] identified that tasks running concurrently
on the PUs of shared-memory SoCs are subject to significant
slowdowns. At the cloud level, multi-tenancy is often un-
avoidable [43, 52] since each server serves requests coming
from multiple edge devices. These two types of slowdowns
are often more severe at the performance-limited edge
devices than more commonly studied high-performance sys-
tems in the cloud [6, 41]. Therefore, if resource management
mechanisms in DECSs do not account for slowdowns at different
tiers of computation, predicted performance will be inaccurate,
leading to missed QoS targets and oversubscribed resources.

HWand system representation schemes: Graphs have
been commonly used to represent system topologies in tradi-
tional large-scale systems [14, 20, 60], cloud providers [31],
network-on-chip modeling [59, 83] and electronic design
automation [46]. Among the most notable, Hwloc [11, 25, 42],
an approach focused on HPC systems, uses a tree data struc-
ture to represent the underlying HW. However, when used
for DECSs, these approaches (i) are incapable of adaptive
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Table 1: Feature comparison against the state-of-the-art.
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detection of shared resource contention and propagation of the
slowdown across different layers, (ii) do not support segregated
resource clusters and abstractions, and (iii) are not versatile
enough to support dynamic changes to the HW topology.
Scalable and adaptive resource allocation and man-

agement: Many task-based execution frameworks [1, 9, 22–
24, 57, 77] have been proposed for heterogeneous HPC
systems. Interference-aware resource management within
GPUs [76] and across large-scale clusters [24, 29, 30, 71, 72]
is also widely studied for server-based systems [28, 70]. Most
recently, multi-accelerator collaborative execution in em-
bedded system SoCs [8, 10, 39, 68] attracted attention. A
few studies [3, 7, 32, 62, 80] focused on task mapping in
edge-cloud platforms, however, they are either hand-tuned
for specific application and HW, or they ignore diverse hetero-
geneity.
Comparison of the features supported: Table 1

provides an overall comparison between HARNESS and
other relevant works by the features they support: (i)
the ability to represent arbitrary HW configurations and
topologies within and across nodes, (ii) scalable resource
management across nodes, (iii) support for arbitrary class
of applications (i.e., not application-specific), (iv) accounting
for the slowdown caused by shared resource usage, (v)
dynamically adapting to HW changes, (vi) modeling the
performance of heterogeneous processors within a node, (vii)
modeling diverse heterogeneity across the nodes, and (viii)
supporting segregated/isolated resource clusters. Overall,
HARNESS is the only work that supports all these features.
Such comprehensive support is necessary to scalably and
accurately model and manage resources in DECSs. The three
studies (LaTS [81], ACE [74], Multi-tier CloudVR [49]) that
we compare our work against are further explained in § 5.2.

3 Motivation
To demonstrate the need for a comprehensive resource
manager for DECSs, we have developed and studied the
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Figure 1: Left: The tasks in VR app and PUs they could run on.
Upper: The frame pipeline for each PU. f4[e1] refers to frame
4 on edge device 1. Lower: [E]dge and [S]erver side latency,
communication, and slowdown breakdown for VR applica-
tion on a DECS containing 3 edge devices and 2 servers.

behavior of a real-life edge-cloud application. The appli-
cation implements a remotely rendered 3D virtual reality
(VR) environment, where users wear untethered VR glasses
equipped with multi-accelerator SoCs. Most of the tasks on
the VR glass (i.e., edge device) could run locally, but a power-
ful remote server is still needed to deliver a low-latency and
high-definition rendering of the 3D environment which VR
users navigate using their body movements. To minimize
end-to-end latency, we deploy an RNN-based predictive
rendering approach [50] to speculatively predict the future
poses of the VR user based on earlier body movements.
We explore the execution of this VR application on a mini
edge-cloud platform consisting of NVIDIA’s Orin series edge
SoCs and a remote server with a discrete GPU. In addition
to CPU and GPU, Orin SoCs employ a special accelerator
named Video Image Compositor (VIC), which can efficiently
run some computer vision functions. The left part of Fig. 1
shows the linear order of five tasks of interest. Each task can
be run on different set of PUs (GPU, VIC, CPU) on the server
and edge devices. The upper-right part of Fig. 1 shows the
frame execution pipeline when two edge devices share a
single server for remote rendering operations. Initially, only
one edge device (e1) is active with another edge device (e2)
joining later during execution. Eight PUs (C, G, V for edge
devices and C, G for server) work together to complete the
five tasks for each frame captured by the edge devices.
We derive several key insights from Fig. 1: (i) Pose

estimation is initially run on server GPU because it is
faster, including the communication latency. However,
since the server GPU is prioritized for rendering tasks,
T1:pose-estimation (lilac) is swapped from the server to



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Ismet Dagli, Justin Davis, and Mehmet Esat Belviranli

the edge after the first frame. This decision requires rapidly
and scalably checking dynamic PU availability at every task
assignment. (ii) As new types of tasks start executing in
the system, the mapping of older tasks could be changed
depending on latency requirements. For example, the CPU
of edge device one was executing T3:decode (green) tasks
only, until T5:display (pink) tasks started arriving. The best
decision once this occurs is to offload T3:decode tasks to the
GPU, despite the GPU already handling T1:pose-estimation.
This decision requires heterogeneity, latency, and contention-
aware mapping decisions. (iii) New edge devices joining
the system may cause a slowdown on the server due to
multi-tenancy.For example, towards the end, two T2:render
(turquoise) tasks begin arriving from both edge devices. The
best mapping decision is to keep processing them on the
server, despite the slowdown, since the latency requirements
of the edge devices are still met. This decision requires
multi-tiered consideration of shared resource slowdown and
adaptive task mapping w.r.t. the changing HW.

Bringing the example one step further, suppose there are
two slower edge devices (Orin Nano E1 and Xavier NX E2)
and one faster edge device (Orin AGX E3), all of which share
two servers (S1 and S2) for the remote rendering task. The bot-
tom portion of Fig. 1 gives a breakdown of the time spent to
process a single frame on each edge-server pair. While map-
ping the rendering tasks, the resource manager can identify
that there are lenient latency constraints on the slower edge
devices, since they will process other tasks in the pipeline
slower. As a result, mapping their rendering tasks to the
same server will not violate their latency requirements, al-
though the collocated tasks will run longer due to shared
resource use. On the other hand, this mapping will enable
the other server to handle the stricter latency requirement
of the faster edge device allowing the latency requirements
for all rendering tasks from all edge devices to be met. The
ability to make such a decision requires a comprehensive
knowledge of all computational devices and taskmappings in
the entire system. However, due to resource segregation, nei-
ther edge devices nor the servers will have such knowledge.
This observation highlights the need for a holistic, multi-layer,
contention-aware and adaptive resource manager that could
operate under resource segregation.

4 HARNESS: A Holistic Resource Manager
for Diverse Edge-Cloud Systems

4.1 Design Requirements
To address the unique resource management needs of DECSs,
we identify and target the following requirements while
designing our proposed approach: (1) Computing systems
with arbitrary and abstract topologies should be supported,
(2) resource management should be de-centralized and

support resource abstraction and segregation, (3) assignment
of a task to a PU should be scalable and adaptive to dynamic
changes in DECS, (4) the cumulative slowdown due to shared
resource contention at different levels should be taken into
account, and (5) modular integration of various performance
and slowdown prediction models should be supported.
Through the design ofHARNESS, requirements (1) and (5) are
captured by the graph-based representation (§ 4.3), require-
ments (2) and (3) are addressed by the Orchestrators (§ 4.5),
and requirement (4) is satisfied by the Traversers (§ 4.4).

4.2 Overview of HARNESS
HARNESS is composed of three major components:
• HW-GRAPH : A multi-layer graph-based HW repre-
sentation that models the connections and interac-
tions between the computational nodes and PUs in a
DECS (§ 4.3).
• Traverser : A mechanism to automate the performance
and slowdown prediction by traversing the tasks in a
control flow graph (CFG) against the HW-GRAPH of a
computational node (§ 4.4).
• Orchestrators (ORCs): Hierarchically organized, per-
node daemons that facilitate the assignment of tasks
to PUs in a decentralized manner (§ 4.5).

An overview of HARNESS is depicted in Fig. 2. HARNESS
fosters a decentralized and edge-triggered resource manage-
ment scheme. Edge devices may run the same or different
applications and these applications are assumed to be
composed of tasks each corresponding to a unit of assignable
computation (e.g., kernel). The system developer/program-
mer, i.e., the user of HARNESS, is expected to utilize the
resource manager for the tasks representing computationally
significant and acceleratable code blocks. Such tasks are to
be labeled as TASKs (see Application representation paragraph
in § 4.3) by the developer. Whenever there is a TASK or a set
of TASKs that are ready to execute, the developer invokes
our resource manager via the MapTask() API call. These
TASK(s) are assumed to be either created directly or freed
through dependency resolution. The developer passes the
set of TASKSs, any dependencies, per-task constraints, and
the overall objective (such as minimizing the overall latency).
The developer controls the granularity of the mapping
by passing the number of desired TASKs to schedule, and
HARNESS decides which node (i.e., PU on device) to map
each TASK onto. Overall, the steps HARNESS utilizes during
operation are as follows: ➀ An ORC is associated with
each higher-level node (e.g., an edge device, a server or an
abstracted/isolated node group) in the HW-GRAPH and run
as a daemon. The MapTask() function is called on the local
ORC to locate the resource(s) that the TASK(s) supplied by
the developer can be mapped onto. ➁ The local ORC first
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Figure 2: An overview of the HARNESS framework

invokes its internal Traverser to see whether any PU(s) in
the same node could run the TASK(s) under given constraints.
➂ Traverser utilizes theHW-GRAPH to query each PU in that
device for its current TASK(s) and predicts the performance
and potential slowdown if there are concurrently running
TASK(s) sharing the same resources with that PU. ➃ If the
local device does not have a suitable PU that can execute the
TASK under the given constraints, the local ORC requests
resources from its parent ORC. ➄ This triggers a hierarchical
query across other ORCs—first among the edge cluster(s)
and then, if needed, among the server cluster(s)—each
invoking its respective Traverser to locate an appropriate PU.
➅ Based on the returned resource/PU type (e.g., CPU, GPU,
VIC), the developer then invokes the proper implementation
of the TASK to run on the designated resource/PU.

4.3 HW-GRAPH
The foundations of HARNESS are built upon a graph-based
representation scheme, HW-GRAPH , customized to model
the HW components and their complex interactions in a
DECS. HW-GRAPH relies on a connected multi-layer graph
topology [5, 37] to describe the hierarchical interactions
between multiple levels of HW abstractions. In HW-GRAPH ,
a node corresponds to one of these: (i) a PU, such as a CPU
core or GPU, (ii) a storage unit, such as cache or memory, (iii)
a dedicated controller circuit, such as memory controller or
network switch, (iv) an abstract component, whose internals
are not known, or (v) a sub-graph representing a high-level
component which groups smaller components, such as a
CPU with multiple cores and caches or segregated resource
clusters (e.g., ‘the cloud’ composed of multiple servers).
The edges in the HW-GRAPH correspond to interconnects
linking the nodes listed above. Edges define (i) how PUs are
connected to each other and the memory, and (ii) how higher-
level nodes (i.e., edge devices or servers) are connected to
each other in the network. The graph-based representation
of the entire continuum enables HARNESS to algorithmically
(i.e., in a generalized and automated way) (a) traverse the PUs
in an SoC or server, (b) locate the storage (e.g., memory) and
control components that two PUs share as they operate, (c)

virtually group sets of computational devices (such as various
edge or cloud clusters) for scalability, and (d) hierarchically
identify other nodes in a DECS that a given node can offload
its computation onto. Each node stores its own HW-GRAPH
to represent its sub-components. All HW changes in the
system (e.g., device additions/removals, network bandwidth
changes) are captured via HW-GRAPH updates and prop-
agated to the corresponding parent and child ORCs during
execution. These features of HW-GRAPH enable seamless op-
eration of Traverser and Orchestrator mechanisms, described
later in §4.4 and §4.5, and let HARNESS support DECSs with
any arbitrary computational and communicational topology.
Figure. 3 illustrates a HW-GRAPH representation of an

edge device, NVIDIA AGX Xavier SoC, connected to a
server in the cloud, similar to the VR application given
in § 3. In this example, the edge device and server are
the top-most layers in the graph (i.e., layer 1), and they
are connected via abstract components and links, which
correspond to the unknown network infrastructure. The
level of component detail increases in layers 2 and 3, and
dashed connections across layers represent the relationship
between abstracted and detailed versions of components. In
the given example, HW-GRAPH can be used to automatically
uncover a relation between DLA (deep learning accelerator)
and PVA (programmable vision accelerator) residing under
Layer 2 Vision Cluster. Concurrent execution on these DSAs
results in the shared usage of multiple components: SRAM in
Vision Cluster and LPDDR4x (i.e., shared system memory).
Intersection of the compute/memory paths used by two
TASKs concurrently running on DLA and PVA algorithmically
unveils these shared resources. While the example given
in Fig. 3 is a highly detailed representation of the NVIDIA
Xavier SoC, the developer may choose to represent only the
relevant components of the system, such as the CPU, GPU,
DLA, PVA, and the shared LPDDR4x. With these components,
the developer could still model shared memory contention
between the PUs, but the L2 cache based contention across
the CPU cores would not be modeled if layer 3 is omitted.

4.3.1 The API:. The HW-GRAPH corresponding to a
DECS system is created via an object-oriented interface. Ev-
ery HW component derives from either Node and Edge ob-
jects. TASK(s) can only be mapped to higher-level Nodes in
the HW-GRAPH . For example, the Convolution Engine
sub-component of the DLA in Fig. 3 cannot run a computa-
tional task alone, but the DLA can. Such higher-level Nodes,
i.e., PUs, extends the Predictable interface and implement
the predict() function so that the time it will take for the
PU to run a specific task can be queried algorithmically by
the Traverser (as explained in § 4.4).
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4.3.2 Performance Prediction: The predict() function
takes a TASK object as input to retrieve its previously mod-
eled performance data for the PU-TASK pair. This function is
designed in a modular way to support existing component-
level performance prediction mechanisms, such as empirical
profiling [64], Roofline [75], and analytical modeling [66]. To
construct the HW-GRAPH , the developer creates Node and
Edge objects that the target system is composed of. HAR-
NESS ships with HW-GRAPH templates for commodity edge
platforms and server components so that the developers can
easily build upon. Automated creation of HW-GRAPH is left
as future work. Each Predictable component implements
getComputePath() function, which returns the shortest
path between the PU and the other memory/control sources
the TASK relies on. Such a list of resources is obtained during
profiling and stored inside the TASK object. Traverser calls
the getComputePath() function to automatically identify
shared resources and account for any potential slowdown.
In our experiments, we pre-profile the TASKs to be executed
for all possible target PUs. While profiling TASKs beforehand
may not be possible for a wider range of DECSs and appli-
cations, many DECSs run a pre-determined set of TASKs in
a repetitive manner [13, 44]. Therefore, in this work, we con-
centrate our efforts on resource management only while also
enabling developers to modularly integrate their performance
modeling methodology via the predict() interface.

4.3.3 Application representation: We assume each device
executes the same or different applications that are com-
posed of computational regions (e.g., kernels, API calls etc.)
performing a specific function (e.g., convolution, matrix mul-
tiplication etc.). Right before such function calls or code
regions, the users of HARNESS (i.e., application developers)

are expected to create a TASK object that is composed of an
identifier, input/output sizes, task constraints (e.g., deadlines)
and the list of local and remote PUs that the block could be
executed on. HARNESS assumes that only computationally
significant regions of the applicationwill be denoted as TASKs
and the remaining code will be executed locally. The user
then invokes the HARNESS resource manager (explained in
§ 4.5) via the MapTask() API call and passes the TASK object
as a parameter. At this point, the computational region corre-
sponding to the TASK object is assumed to be ready to execute
(i.e., all dependencies are resolved) and will be mapped to
the PU returned by the MapTask() call. If there are multiple
TASKs ready to execute, then the developer may pass a set of
TASKs, their dependencies (if any) and per-task constraints as
parameters. The ability to pass one or more TASK objects at
once enables the developer to control the granularity of the
mapping – the trade-off between task mapping overhead and
task granularity is evaluated in § 6.5. Once the MapTask()
function returns a PU (local or remote) that satisfies the TASK
constraints, the developer is expected to execute or offload
the corresponding task region accordingly.

4.4 Traverser
We devise a Traverser as the mechanism to automate the
process of predicting the performance of a given set of TASKs
and their dependencies on a target set of PUs. Traverser acts
as a cost function used by ORCs and it accounts for the poten-
tial shared resource slowdown among concurrently running
TASKs while calculating the cost (i.e., performance). Traverser
uniquely automates this process by “traversing" the sub-
components of a higher level component in the HW-GRAPH
at each task assignment. Traverser is invoked by the ORC
(see § 4.5 for details) to predict the performance of a TASK
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Figure 5: Timeline of five tasks completed on three PUs, with
shaded areas showing additional slowdown and dashed lines
marking contention intervals.

on a specific PU to check whether a mapping between them
meets constraints without violating the constraints of exist-
ing tasks. Traverser, whose sequence diagram is depicted in
Fig.4, operates as follows: ➀ Starting from the independent
TASK(s) in the tasks set provided by the developer, it traverses
through the dependencies in a time-ordered fashion by
following the parallel & serial regions of the CFG and depen-
dencies. ➁ Traverser honors the task-to-PU assignments,
which are provided by ORC. ➂ Traverser initially calls the
predict() function to find standalone execution time on
the PU in which a task is mapped. ➃ Then, after identifying
the contention intervals, as prescribed below, Traverser
calls the slowdown() function with the collocated TASK
information so that the slowdown is accounted for in the
initially predicted performance and ➅ returned to the ORC.

4.4.1 Contention intervals: When multiple TASKs run
simultaneously on different PUs, TASKs will be slowed down
non-uniformly throughout their execution depending on
which other TASKs are running on the same computational
node or PU at that particular time. Fig. 5 illustrates this be-
havior by depicting execution timelines of three workloads
with five hypothetical TASKs that are running to completion
on three PUs. To breakdown the slowdown calculation,
we divide the initial predicted execution timeline (with no
slowdowns) into contention intervals. Intervals are separated
by time makers (e.g., 𝑡0 to 𝑡4) each indicating the beginning
or end of a task. This results in each interval to contain at
most one task for each PU, hence simplifying the slowdown
calculation. Then, the amount of slowdown for each interval
is quantified iteratively as explained below.

4.4.2 Slowdown calculation: HARNESS uniquely de-
couples the calculation of slowdown from standalone
performance models: (1) Only once for each system, the re-
sources that can be shared are characterized and profiled for
the slowdown they will experience per the amount of concur-
rent use they encounter. (2) Then, for a given resource, such
as memory or a PU, each task is identified by the generalized
amount of usage for that specific resource, such as requested
memory throughput or core utilization, respectively. (3)
Finally, during runtime, the predict() function uses
concurrent TASKs’ amount of usage for that specific resource,
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Figure 6: ORC hierarchy on a DECS with three edge devices
and two servers.

and slowdown() function incorporates corresponding
slowdown using the models built in the first step.
It is essential to note that the novelty of our slowdown

calculation comes from the modular and decoupled integra-
tion methodology that scales across multiple tiers of DECS.
The development of per-PU slowdown models is outside of
the scope of this work, and existing slowdown models are
utilized in our experiments.

4.4.3 Handling prediction inaccuracies: Since HARNESS
relies on the performance models provided by the user, the
predictions of execution times could be inaccurate. To accom-
modate predictions that are consistently off within margins,
we integrate a rolling-window-based correction mechanism.
Traverser achieves this by comparing the predicted execu-
tion times for the specific TASK and PU pair at hand with
the actual time it takes to execute the TASK. If the differ-
ence is above a predetermined threshold 𝜃 , then Traverser
calculates a correction factor 𝜎 by averaging the latest 𝑛 pre-
dictions for the specific TASK and PU pair. Instead of relying
solely on the predicted execution time 𝜏 calculated by the
predict() and slowdown() functions, Traverser uses 𝜏 × 𝜎
for upcoming task invocations. In our experiments, 𝜃 is set
to 5%, which is a marginally higher value than the average
model error rate that we measured in § 6.2. Also, we find that
a window length of 𝑛 = 15 predictions is sufficient to capture
the dynamic changes in the system that affect prediction
accuracy.

4.5 Orchestrator
The ORC mechanism is an integral component of HARNESS
and facilitates assignments of tasks to PUs in a scalable way.
To achieve this, ORCs work in a hierarchical tree topology
and ORCs are responsible for finding an appropriate PU
to map a given task to. An ORC daemon is created for
every non-leaf computational node (e.g., edge device or a
server) of HW-GRAPH . They internally utilize Traverser and
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HW-GRAPH to look for PUs in their hierarchy. Each ORC
could only communicate with its parent and child ORCs, and
none of the ORCs in the system is assumed to have the full
knowledge of the HW-GRAPH or other ORCs in the system.
Fig. 6 depicts an ORC hierarchy for the example DECS we
described in § 3. There is an ORC associated with each edge
device and server (2, 3, 4, 6, and 7). In addition, there are
higher-level ORCs (1 and 5) associated with virtual abstrac-
tions created for edge and server clusters. There is also a Root
level ORC that is only known by ORCs 1 and 5. There are
no ORCs associated with the leaf-level nodes (e.g., the PUs
corresponding to node #3, #5, #6 and #7). This is because the
parent ORCs (2, 3, 4, 6, and 7) are assumed to have full knowl-
edge of the PUs that are immediate children of the node (e.g.,
Node #2 corresponding to Edge #1) that they are overseeing.

Algorithm 1 Task Allocation via Orchestrator Mechanism
1: Input:𝑇𝑎𝑠𝑘𝐼𝑑 , 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 ,𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ,𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ,
2: Output: 𝑡𝑎𝑟𝑔𝑒𝑡𝑁𝑜𝑑𝑒

3: FunctionMapTask(𝑇𝑖 , 𝑁 𝑗 ,𝐶𝑖 ,𝑇𝐷𝑖 )
4: for all𝐶ℎ𝑖𝑙𝑑 ∈ ChildrenOf(𝑁 𝑗 ) do
5: Add AskChildren(𝐶ℎ𝑖𝑙𝑑,𝑇𝑖 ,𝐶𝑖 ,𝑇𝐷𝑖 ) to 𝐵𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠

6: if 𝐵𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠 is not empty then
7: BestNode← select best in 𝐵𝑒𝑠𝑡𝑁𝑜𝑑𝑒𝑠 on𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒

8: else BestNode← AskParent(𝑁 𝑗 ,𝑇𝑖 ,𝐶𝑖 ,𝑇𝐷𝑖 ) ⊲ Find new nodes
9: return BestNode, Result
10: Function CheckTaskConstraints(𝑇𝑖 , 𝑁 𝑗 ,𝐶𝑖 ,𝑇𝐷𝑖 )
11: result← InvokeTraverser(𝑇𝑖 , 𝑁 𝑗 ,𝑇𝐷𝑖 ) ⊲ Predict slowdown for𝑇𝑖
12: if not SatisfyConstraints(𝑁 𝑗 ,𝑇𝑖 ,𝐶𝑖 ) then
13: return result, False ⊲ 𝑇𝑖 ’s constraint is failed
14: for all activeTask 𝑖𝑛 𝑁 𝑗 do ⊲ predict slowdown on active Tasks
15: InvokeTraverser(𝑎𝑐𝑡𝑖𝑣𝑒𝑇𝑎𝑠𝑘, 𝑁 𝑗 ,𝑇𝐷𝑖 )
16: if not SatisfyConstraints(𝑁 𝑗 , 𝑎𝑐𝑡𝑖𝑣𝑒𝑇𝑎𝑠𝑘,𝐶𝑖 ) then
17: return result, False ⊲ one active task’s const. failed
18: return result, True ⊲ all constraints OK
19: Function AskChildren(𝑁 𝑗 ,𝑇𝑖 ,𝐶𝑖 ,𝑇𝐷𝑖 )
20: if IsLeaf(𝑁 𝑗 ) then
21: if result← CheckTaskConstraints(𝑇𝑖 , 𝑁 𝑗 ,𝐶𝑖 ,𝑇𝐷𝑖 ) then
22: return result, 𝑁 𝑗 ⊲ Task can be assigned
23: else return MapTask(𝑇𝑖 , 𝑁 𝑗 ,𝐶𝑖 ,𝑇𝐷𝑖 ) , 𝑁 𝑗 ⊲ Ask children
24: Function AskParent(𝑁 𝑗 ,𝑇𝑖 ,𝐶𝑖 ,𝑇𝐷𝑖 )
25: parent← ParentOf(𝑁 𝑗 )
26: for all child ∈ ChildrenOf(parent) do ⊲ ask each child of parent
27: if child ≠ 𝑁 𝑗 then
28: returnMapTask(𝑇𝑖 , child,𝐶𝑖 ,𝑇𝐷𝑖 ) , 𝑁 𝑗

A pseudo algorithm for how ORCs work is given in Alg. 1.
The working principles of theORC mechanism are as follows:
(i) For each new TASK 𝑇𝑖 (along with its constraints 𝐶𝑖 and
dependencies 𝑇𝐷𝑖 ), an edge device invokes the MapTask()
function of its local ORC (line 3). (ii) The local ORC iterates
over its children (line 19): (a) If the child is a leaf node 𝑁 𝑗 (i.e.,
a PU that a TASK could be directly assigned) (line 20), then
the ORC invokes Traverser on the PU to get a performance
prediction that also accounts for the slowdown in the new

TASK (line 11) and actively running TASKs (line 15). (b) If the
child is an ORC, MapTask() is recursively invoked on the
child ORC (line 23). (c) If a child PU that satisfies the TASK’s
constraints is found, then that PU is returned. (line 7). (iii)
Otherwise, the search is propagated to the parent ORC (line
8): (a) Parent ORC invokes MapTask() for the siblings of the
localORC (line 28). (b) If a suitable PU is not found, the search
is propagated to other ORCs in a depth first search order.

To determine whether a suitable remote PU is found, the
latency to communicate with such PUs from the origin PU
is also factored in while checking for the constraints. To
prevent deadlocks, when a remote ORC finds a suitable PU,
that PU is provisionally reserved. The reservation is released
if the originating ORC does not assign the TASK or timeouts.
Once MapTask() returns, the user initiates the task execu-
tion via ExecuteTask() function. For local PUs, the task
is executed locally by passing the input to the previously
compiled binary directly. For PUs on other nodes, HARNESS
internally invokes remote task execution.
Remote task executions are carried out similarly to

the serverless computing paradigm outlined in [58].
ExecuteTask() serializes the TASK ’s inputs and transfers
the data to the remote node through the communication
channel established between the local and remote ORCs.
The binary required for the remote TASK and the PU pair
is assumed to be previously initialized by the user via the
registerBinary() function (see § 4.6 for details). Once re-
mote execution is invoked, the remote ORC daemon service
writes the input data to a predetermined directory expected
by the TASK binary and initiates execution. Once the exe-
cution is complete, the output is streamed back to the local
ORC initiating the TASK execution. For both remote and
local TASK executions, the corresponding TASK binaries are
executed directly on the remote system, without any con-
tainerization; as we solely focus on system utilization in this
work and not the isolation of resources.

4.6 Usage of HARNESS
HARNESS framework provides the following:

• HW-GRAPH API for users to build HW-GRAPH mod-
els of their targeted compute nodes.
• Implementations for the ORC and Traverser mecha-
nisms and interfaces for users to interact with local
ORCs.
• Daemon services, communication and synchronization
between ORCs at different compute nodes.
• Local and remote task execution mechanisms, includ-
ing input/output data serialization and transfer for
remote tasks (See the end of § 4.5 for details).
• A collection of HW-GRAPH models for commodity
mobile and autonomous SoCs.
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Users of HARNESS are expected to:

• Create the HW-GRAPH representation using the pro-
vided API calls or pre-made models shipped with HAR-
NESS.
• Create TASK objects for the kernel executions that will
be managed by HARNESS
• Declare predict() and getComputePath() functions
for the PUs and TASKs that the PUs in the system
could run.
• Provide and register device-specific kernel implemen-
tations, i.e., binaries, for each TASK.
• Call the MapTask() function to find a target PU for a
TASK and call ExecuteTask() to run the TASK.

Listing 1 provides code snippets for an example use of
HARNESS from CloudVR application. The example shows
the steps that the user needs to follow to add the HW-GRAPH
for the Jetson Xavier AGX hardware, and then construct,
map, and execute a “Reproject” task. First, the user adds
a XavierSoC node to HW-GRAPH , indicating key compo-
nents such as ARM architecture, accelerators (i.e., GPU,
DLA, PVA), and memory resources. Subnodes (ARMClus-
ter, DLA_Cluster, PVA_Cluster, DRAM) in layer 2 are then
added to represent additional details like caches, multiple
accelerator cores, and shared memory. Next, a new TASK ob-
ject is created with a latency constraint of 30 ms. Then, the
user calls registerBinary() to let HARNESS know which
binary a given TASK and PU pair should use. The user then
implements predict() and getComputePath() functions
for different PU targets that the TASK could run on. The
steps described so far are performed only once for the un-
derlying hardware (i.e., HW-GRAPH related operations) or
for each TASK type (i.e., TASK related operations). During
runtime, when it is time to launch the “Reproject” task in the
application, the user calls MapTask() function to ask its local
ORC for a suitable PU to execute the task at hand. If multiple
tasks are asked to be mapped at once, then the user could
specify an optional “dependency” parameter for the ORCs
and Traversers to take the dependencies into account when
mapping the tasks. Finally the user calls the ExecuteTask()
function for the targetPU, along with the input and output
data locations. This function blocks until the execution of
the task(s) finishes.

The HARNESS framework and the applications we use in
this paper are available for download at https://github.com/
hpsslab/harness.

5 Experimental Setup
5.1 Experimented Edge-cloud Applications

Application 1 (VR) Cloud-rendered VR: . This application is
explained in § 3 and experimentation detail is given in § 5.2.

Listing 1: Example usage of HARNESS APIs

import harness

hw_graph = harness.HWGraph.init()

orc = harness.ORC.init("ID", parent="Edge Cluster")

# An example of how one node is added in Layer 1

hw_graph.add_node("XavierSoC", harness.NodeSpec(arch="arm64", CPU="

ARMCluster", GPU="VoltaArch", VisionCluster="2xDLA_2xPVA",

VideoEncoder="H264", mem="DRAM"), parent="Edge Cluster")

# Layer 2 sub-nodes under Xavier SoC

hw_graph.add_node("ARMCPU", harness.NodeSpec(arch="arm64", clusters

=4, mem="L3"), parent="XavierSoC")

hw_graph.add_node("VisionCluster", harness.NodeSpec(DLA_Cluster=2,

PVA_Cluster=2, mem="SRAM"), parent="XavierSoC")

hw_graph.add_node("DRAM", harness.NodeSpec(type="LPDDR4x", memSize="

8GB"), parent="XavierSoC")

# Interconnect each computation node in Layer 1 to SharedLPDDR4x

with AXI edges

hw_graph.add_edge("ARM_Cluster, GPU, VisionCluster, DRAM,

VideoEncoder", link="AXI", bandwidth="137GB/s")

# Create "Reproject" TASK object

task = harness.TASK(ID="Reproject", PU=["CPU","GPU","VIC"],

constraint=[harness.LatencyDeadline("30ms")], inputSize,

outputSize)

# Register pre-compiled binaries for the "Reproject" task

harness.registerBinary(task, "CPU", ".../bin/reproject_CPU")

harness.registerBinary(task, "GPU", ".../bin/reproject_GPU")

harness.registerBinary(task, "VIC", ".../bin/reproject_VIC")

# Implement the predict() function for PU-TASK pair.

def predict(task):

profileData = harness.loadProfileinfo(f"/profiles/{task.ID}_{task

.PU}.json")

return {"latency": profileData.get("latency"), "resourceUsage":

profileData.get("memUsage","cacheUsage")}

# Implement getComputePath() function for the GPU (implementations

for other PUs are omitted)

def getComputePath(task):

harness.Paths["Reproject"] = {

"GPU": [XavierSoC, VoltaArch, DRAM] }

return harness.Paths.get(task.ID)

# local ORC invokes mapTask (given in Algorithm 1) to find a target

PU either locally or remotely

targetPU = orc.MapTask(task, constraint=task["Constraint"],

dependency="Decode", objective="min_latency")

# Execute the task locally or remotely, as determined by targetPU

output = harness.ExecuteTask(task, input_data="/input/frames.bin",

output="/output/result.bin", targetPU=targetPU)

Application 2 (Mining) Smart Drill Bits: Underground
mining requires operators to be close to the drilling machine
to monitor conditions and the rock type being cut in
order to prevent excessive damage to the drill bits and the
mining machines. To minimize fatalities [15] and allow the
operator to perform their role from a safer distance, an

https://github.com/hpsslab/harness
https://github.com/hpsslab/harness
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Figure 7: (Upper) The system operation for the Mining app.
(Lower) Corresponding CFG and the pipeline of tasks.

in-the-field, edge-based real-time data analysis system has
been developed in collaboration with Mining and Electrical
engineering disciplines. In this application, we read the
data in real-time through multiple smart sensors that are
attached to the back of the drills. The experimental setup is
depicted in the upper right section of Fig. 7. The application
employs three machine learning (ML) tasks—support vector
machine (SVM), k-nearest neighbor (KNN), and multi-layer
perceptron (MLP)—to process smart sensor data. These tasks
can be executed in parallel as shown in the lower section of
Fig. 7. Since the cutter head drum, equipped with multiple
smart sensors, rotates, the sensor data must be processed
on edge devices and servers in real-time to identify the type
of material being cut. If one of the ML algorithms detects
an anomaly (e.g., the rock type has changed), the system
signals the machine controller to halt the operation.

5.2 System Configuration
5.2.1 Hardware: Table 2 lists the four edge devices with
heterogeneous SoCs and the three servers with GPUs that
we use in our experiments. The two diverse applications
we tested HARNESS with are composed of numerous and
different types of tasks. Fig. 8 lists the standalone, per-task
execution times for each PU in the system, for both appli-
cations and also server-edge communication time for the
VR app. Tasks in VR can target up to 3 PUs, which are CPU,
GPU, and VIC, whereas ML tasks in Mining can run on the
CPUs and GPUs of each server and edge device. The data
arrival frequency (i.e., injection rate) is the FPS value for
each device in VR (e.g., 30 FPS at 720p for Orin AGX) and 10
Hz per sensor in Mining. We utilize PyTorch for ML tasks in
the Mining application. In edge devices, we use JetPack [56]
5.1.1 version and VPI [55]. Edges and servers are connected

Table 2: List of targeted edge devices and servers.

Edge Devices: Orin AGX Xavier AGX Orin Nano Xavier NX
Server-1: NVIDIA Titan RTX & AMD EPYC 7402
Server-2: NVIDIA GeForce RTX 3080 Ti & Intel i9-11900K
Server-3: AMD Ryzen 5800H & AMD Graphics

through WAN having a capacity of 10 Gb/s per device. Our
slowdown model builds upon PCCS [78]. The novelty of
our approach comes from (i) scalable integration of PCCS
into the multi-tiered hierarchical ORC mechanism, and (ii)
the decoupled approach that eliminates the need for pair-
wise profiling of each task. On server GPUs, we estimate
multi-tenancy-caused slowdown via profiling and empirical
methodologies proposed by [26, 33]. We profile standalone
execution times and slowdown characterization only once
for each task/PU pair. Since the HARNESS enables decou-
pling the slowdown calculation, there is no need for pair-wise
execution of potentially collocated tasks.

5.2.2 Baselines: We compare against three studies:
LaTS [81] proposes a latency-aware task scheduling algo-
rithm for real-time vision applications on heterogeneous
edge-cloud systems. LaTS benchmarks the performance
of system per task, periodically monitors the availability
of PUs, and dynamically assigns the tasks based on the
standalone execution time on PUs. However, LaTS does not
utilize a shared resource contention mechanism.
ACE [74] constructs a unified platform for edge-cloud
platforms considering high scalability. Yet, ACE is limited
to static mappings only. So, ACE struggles to adapt to the
changes throughout the execution and does not consider
shared resource slowdown within a node.
Multi-tier CloudVR [49] specifically addresses the challenges
associated with real-time remote VR rendering. Cloud-VR
is adaptable to dynamically changing network conditions
by balancing the computation and communication time by
shrinking the frame resolution. However, CloudVR does not
handle tasks other than rendering in the VR app.

The two baselines we compare against (i.e., ACE [74] and
LaTS [81]) are not shared-resource aware and ACE is also not
capable of adapting to dynamic changes. So, the experiments
in § 6.1 and § 6.2 comparingHARNESS against these baselines
serve as an implicit ablation study for HARNESS.

6 Evaluation of HARNESS
In this section, we assess the utility ofHARNESS with various
experiments. For the first two experiments given in § 6.1 and
§ 6.2, we use VR and Mining apps, respectively. For other
experiments, we interchangeably use both applications.

6.1 Overall Performance
In this main experiment, we assess HARNESS’s performance
using a DECS comprising five edge devices and three servers
(one from each with two Xavier NX). We define latency as
the total time of a single VR frame spent on edge and server.
Our goal is to minimize the pipelined latency of a frame
in the VR app. Our results are reported in Fig. 9. Overall,
HARNESS improves pipeline latency from 11% to 47% over the
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best baseline. During the experiments, we observe that LaTS
and ACE prioritize assigning reproject task to edge’s CPU
(if available) on Orin AGX, Xavier AGX, and Xavier NX over
VIC since CPU’s standalone time is superior over VIC. Yet,
under the shared memory contention by multiple PUs, CPU
generally performs worse than VIC since CPU shares the L4
cache with GPU and VIC has private buffers optimized for
such tasks to minimize memory accesses. Additionally, LaTS
and ACE choose to perform pose estimation on the edge
devices’ GPU and CPU, resulting in underutilized server
resources and oversubscription of edge resources.

The average per-frame latency difference between all edge-
server pairs is 11.8% for ACE, 12.6% for LaTS, and 2.4% for
HARNESS, highlighting HARNESS’s adeptness at offering
balanced system resource utilization. Among the pipelines
of the five edge devices given in Fig. 9, the bottlenecks are
on the server-side for the last three and on the edge-side
for the first two. Given that servers are the bottleneck in
three instances, we deduce that adding an extra server could
enhance the performance of overall system.

6.2 Model Validation
We validate the performance prediction accuracy of HAR-
NESS in the Mining app and compare it to a baseline model
(ACE). In the first experiment, the objective is to determine
the maximum number of smart sensor readings that both an
edge device and a server (e.g., Orin Nano and server 1 in this
experiment) could process within a 100 ms latency threshold.
We define latency in the Mining app as the time passed
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from the data being read by the sensor until all three ML
tasks (i.e., SVM, KNN, and MLP) are completed. This latency
includes computation, slowdown, communication time, and
the overhead spent to schedule the task. Fig. 10.a depicts the
performance predictions made by ACE and HARNESS and
compares them to the actual time it took to run. Notably,
HARNESS shows an average prediction error rate of 3.2%,
significantly lower than 27.4% error rate of ACE. A critical
insight emerges for the experiments involving 30 and 40
sensors: ACE inaccurately predicts that tasks could be com-
pleted under the 100 ms latency threshold while HARNESS
considers other factors, such as shared resource interference.
In the second experiment depicted in Fig. 10.b, we grad-

ually increment the number of edge devices (Orin AGX-E1,
Xavier AGX-E2, and Orin Nano-E3) and servers (server 1 and
2) in the system. Our goal is to determine an upper bound
on the number of sensors that the DECS HW could handle
under 100 ms latency. HARNESS can predict this with up to
98% accuracy whereas ACE overlooks the contention-related
slowdowns and overloads slower edge devices, resulting in
a falsely optimistic sensor count estimation.

6.3 Dynamic Adaptability
When network conditions degrade for an edge device, Multi-
tier CloudVR [49] proposes decreasing the frame resolution
at runtime to keep up the target FPS by reducing both com-
putation (e.g., some listed in Fig. 8) and communication time,
whereas HARNESS can hierarchically update the scheduling
assignments (i.e., dynamically adapt) while also considering
the delay introduced by the network communication since
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Figure 11: The variations in (a) video quality and (b) targeted
FPS for changing network conditions. The Ed(ge) and Ser(ver)
bars without * and with * denote the breakdown before and
after HARNESS adapts to the change, respectively.

the ORC mechanism is triggered for every task assignment.
We gradually decrease the network bandwidth capacity from
10 Gb/s to 1 Gb/s and analyze the change needed for the
frame resolution to meet a fixed FPS target with the same
experiment design in § 6.1. As demonstrated in Fig. 11.a, we
observe that CloudVR targets lower frame resolutions after
7.5 Gb/s whereas HARNESS can keep up with FPS require-
ments by balancing the workloads through the entire system.

To gain a deeper insight into HARNESS’s ability to handle
dynamic workload assignments, we further analyze the time
breakdown of computation, slowdown, and communication
on Orin AGX and target server(s). Fig. 11.b presents the ratio
of the average achieved FPS over the targeted FPS. When
bandwidth is reduced to 7.5 Gb/s, HARNESS successfully
maintains the target FPS above the predefined threshold
while still running mostly on server-2 as in the 10 Gb/s sce-
nario. At a reduced bandwidth of 5 Gb/s, the ORC continues
to assign the rendering task to server-2 for Orin AGX, but it
avoids server-side GPU sharing. This alleviates the additional
communication overhead on the server-side and maintains
the target FPS for every edge device in the system since the
rendering task on other edges can be assigned to different
servers. In the most constrained scenario, at 1 Gb/s, HAR-
NESS proactively identifies and assigns the rendering task to
the best matching server (server-1) that can meet the target
FPS requirements. Meanwhile, rendering tasks previously
running on server-1 are reassigned to server-2.
When a new edge device joins an active edge-server sys-

tem, a server must be assigned or shared to handle, at a
minimum, the rendering and encoding tasks for the new
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Figure 12: (a) HARNESS adaptability during edge device addi-
tions. (b) QoS violations as number of nodes scales.
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Figure 13:Weak scaling experiments for (a)Mining and (b)VR.

device. This necessitates the recalculation and rescheduling
of multiple rendering tasks across servers. After the edge-
device is connected, we dynamically add the device to our
HW-GRAPH and the next time the ORC is called to map
a task, it considers the new change. Fig. 12.a depicts how
HARNESS maintains the desired FPS for varying server-edge
counts. The blue bar denotes the worst FPS among edge-
system pairs before the new device and the gray bar shows
the FPS after HARNESS handles the workload changes.

To analyze the QoS failure for varying edge/server ratios,
we gradually increase the number of edges and servers
by 10 and measure QoS failure per frame (Fig. 12.b). We
report the average QoS failure as the total number of frames
violating the latency requirement over the frames completed.
We observe that DECSs having more than or equal to a
2-to-1 edge/server ratio will result in noticeably high rate
of failures since individual servers struggle to process more
data than two edge devices provide.

While the experiments so far are the results of real-world
testing, the experiments given in Fig. 12 and the subsequent
experiments in the §6.4 rely on simulations that use the
individual edge/server profiles validated in §6.2.

6.4 Scalability
Scaling experiments design: Weak scaling evaluates HAR-
NESS’s performance while increasing the number of
computing devices and keeping the average number of tasks
per computing device constant. Strong scaling keeps the
total number of tasks in the system fixed while the number
of edge devices and servers is proportionally increased. In
the Mining app, we measure the total completion time of the
tasks which includes computation, data transfer, and commu-
nication between devices, slowdown per PU in each device,
and scheduling overhead of HARNESS per task. In the VR
app, as edge devices increase, the number of tasks also grows,
as each device adds more frames and, consequently, more
workload to be processed. The times reported for the VR app
are comprised of similar contributors as with the Mining app.
We compare the scalability of HARNESS against ACE [74],
which we identify as the most relevant state-of-the-art study.

Weak scaling-1: For the Mining app, our initial setup in-
cludes 100 smart sensors with 80 edge devices and 24 servers
(20 and 8 of each edge device and server listed in Table 2,
respectively). Each experiment doubles the number of smart
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Figure 14: (a) Strong scaling experiments, (b) ORC overhead.

sensors, edge devices, and servers in the previous setup.
Fig. 13.a reports the completion time per setup. HARNESS
keeps the trend of completion time around 81ms as the num-
ber of devices and input sources proportionally increases
whereas ACE generally keeps the completion time around
98ms due to the under-utilization of the system.
Weak scaling-2: For the VR app, we start with 85 edge

devices with 50 servers and double them for each setup.
Results shown in Fig. 13.b demonstrate that, for HARNESS,
QoS failure rate is kept minimal as the system scales. Even
though ACE has a similar trend in both applications, lack
of contention handling and static assignment of tasks
leads to under-utilization of the system, resulting in longer
completion times and higher QoS failures.
Strong scaling: In the Mining app, we deploy concurrent

1250 sensors each of which triggers three ML tasks. Results
reported in Fig. 14.a show a linear decrease in completion
time up to the configuration of 640 edge devices. Beyond
this point, the performance is principally constrained by the
KNN task execution time on the Xavier NX edge devices,
which emerge as the primary bottleneck.

6.5 ORC Overhead
We define the ORC overhead for a given task as the ratio
of the initial MapTask() latency over the execution latency
of the task. This time includes the computation time by the
traverse and the time spent for communication and compu-
tation between local and remote ORCs until a PU is found.

DECS size:As the number of edges and servers are doubled,
we measure the ORC overhead per task, average them to cal-
culate the total overhead per iteration of both applications,
and report the distribution in Fig. 14.b. The scheduling over-
head is consistently preserved around 2% for Mining and 4%
for VR apps. We observe that more than 90% of the overhead
originates from communication between ORCs located on
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different edge devices or servers. If ORC is local, there is no
communication and the overhead of running Traverser on
the local HW-GRAPH is minimal (around 0.1ms on average).
If an ORC needs to communicate with remote ORCs over the
network, every hop adds around 0.3ms, with our experiments
having 2 hops max. Each ORC communication transmits a
minimal amount of information over the network (i.e., the
parameters of the MapTask() function, as shown in § 4.6). It
is important to note that profiling times are not included in
the overhead calculations since profiling is performed only
once per task-PU pair.

Task sizes:We investigate the effect of task sizes (e.g., frame
resolution size in the VR app) over the overhead of HARNESS
by varying frame resolution while reducing the latency (i.e.,
FPS) requirements per device proportionally. The results
reported in Fig. 15.a show that, as the input size gets bigger,
the number of tasks sent to servers per second lowers, thus
decreasing the overhead of HARNESS per frame.

Mapping granularity: We investigate the effects of calling
MapTask() with an increasing number of tasks and observe
its relationship to the ORC overhead. Fig. 15.b shows the
results for the Mining app. We observe that the average
latency and overhead decreases until we assign 5 parallel
tasks. However, mapping larger batches of tasks leads to load
imbalance between computational nodes (especially in edge
devices) because MapTask() is designed to assign a given
set of tasks only to the PUs in the same computational node.

6.6 Handling Prediction Errors
We use empirical profiling in our evaluations; therefore, our
prediction error rates are minimal, as shown in § 6.2. Tra-
verser embeds a window-based correction mechanism to
address larger and continuous deviations in performance
predictions (see § 4.4 for details). To demonstrate the ef-
fectiveness of this correction mechanism, we conduct an
experiment in which we artificially introduce delays in task
executions to emulate performance mispredictions.
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Figure 17: Latency and overhead for assignment strategies.

In this experiment, whose results are shown in Fig. 16,
we run the Mining application continuously with five differ-
ent sensor counts. We vary the artificial delay added in task
executions between three intervals: 5%-10%, 10%-25% and
25%-50% of the original execution times. We report the result-
ing slowdown in the average task execution time compared
to an Oracle that has perfect knowledge of mispredicted exe-
cution times. The graphs on the left and right side of Fig. 16
show how HARNESS performs without and with the mispre-
diction correction mechanism, respectively. Our experiments
show that the proposed correction mechanism in HARNESS
is capable of mitigating the side effects of mispredictions
to a considerable extent. As the added delay is higher, the
resulting slowdown is less (compared to the delay to exe-
cution time ratio), due to the averaging of the predictions
over a running window. In addition, we also observe that the
negative effects of misprediction are less significant when
the sensor count is increased. This is due to the increased
amount of opportunities for overlapping present with higher
sensors count.

6.7 Various Mapping Strategies
In the default mapping policy of HARNESS, as given in Alg. 1,
local ORC checks child and parent ORCs hierarchically. Here,
we explore alternate strategies. The first one (i.e., Edge-to-
only servers) involves direct communication from edge de-
vices to servers, bypassing the communication between the
ORCs of sibling edge devices. The second strategy (i.e., Edge-
to-same server) re-attempts to assign the task to the same
node and PU that processed the task in the previous itera-
tion. Lastly, we repeat the two strategies above by increasing
the mapping granularity (MG) of ready tasks, similar to the
previous experiment. Fig. 17.a and 17.b show average task
latency for each strategy. In the VR app, we observe that first
and second strategies improve system latency. Since the ren-
dering task is often mapped to servers, these two strategies
decrease the ORC overhead by skipping less powerful edge
devices. In the Mining app, however, failing to query other

edge devices leads to under-utilization of sibling edge devices
and increases the latency. MG in the Mining app can improve
the average latency whereas it does not in the VR app.

Fig. 17.c and 17d depict the ORC overhead when tasks are
created in varying intervals for Mining (20 Hz, 10 Hz, and 5
Hz) and VR (1.10x, 1x, and 0.75x FPS of default values). We
observe that frequent task creation has a higher overhead
since the ORCs communicate more. In the VR app, grouping
tasks generally causes higher overhead because some tasks
cannot be mapped to a PU under current latency constraints
and we end up splitting the tasks and rescheduling. This
pattern is also observed in the Mining app under high load.
Reprojection task is the only task that can run on VIC, yet
during high load experiments, VIC may not successfully
complete the task under stricter QoS requirements due to
shared resource slowdown, which other baselines cannot
spot. This results in using GPUs instead and leaving VIC
idle. Please note that splitting is applied only when the user
specifies a group of TASKs at once for the MapTask() API
call. Single TASKs are not split into smaller pieces.

7 Conclusion
We propose HARNESS, a holistic resource management
framework tailored for diversely heterogeneous edge-cloud
systems. HARNESS uniquely takes the slowdown due to
shared resource usage into account. We demonstrate the util-
ity of HARNESS on two real-life applications from disparate
disciplines deployed on the field, yielding 47% reduction in
latency over baselines with less than 2% scheduling overhead.
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