
ICCAD Special Session Paper

Automated Generation of Integrated Digital and Spiking
Neuromorphic Machine Learning Accelerators

Serena Curzel§‡, Nicolas Bohm Agostini†‡, Shihao Song‡‖, Ismet Dagli‡¶, Ankur Limaye‡, Cheng Tan‡, Marco Minutoli‡,
Vito Giovanni Castellana‡, Vinay Amatya‡, Joseph Manzano‡, Anup Das‖, Fabrizio Ferrandi§, Antonino Tumeo‡

‡Pacific Northwest National Laboratory, Richland, WA, USA
†Northeastern University, Boston, MA, USA

§Politecnico di Milano, Milan, Italy
¶Colorado School of Mines, Golden, CO, USA

‖Drexel University, Philadelphia, PA, USA

Abstract—The growing numbers of application areas for artificial
intelligence (AI) methods have led to an explosion in availability of
domain-specific accelerators, which struggle to support every new ma-
chine learning (ML) algorithm advancement, clearly highlighting the
need for a tool to quickly and automatically transition from algorithm
definition to hardware implementation and explore the design space along
a variety of SWaP (size, weight and Power) metrics. The software de-
fined architectures (SODA) synthesizer implements a modular compiler-
based infrastructure for the end-to-end generation of machine learning
accelerators, from high-level frameworks to hardware description lan-
guage. Neuromorphic computing, mimicking how the brain operates,
promises to perform artificial intelligence tasks at efficiencies orders-
of-magnitude higher than the current conventional tensor-processing
based accelerators, as demonstrated by a variety of specialized designs
leveraging Spiking Neural Networks (SNNs). Nevertheless, the mapping
of an artificial neural network (ANN) to solutions supporting SNNs is
still a non-trivial and very device-specific task, and completely lacks
the possibility to design hybrid systems that integrate conventional and
spiking neural models. In this paper, we discuss the design of such an
integrated generator, leveraging the SODA Synthesizer framework and
its modular structure. In particular, we present a new MLIR dialect
in the SODA frontend that allows expressing spiking neural network
concepts (e.g., spiking sequences, transformation, and manipulation) and
we discuss how to enable the mapping of spiking neurons to the related
specialized hardware (which could be generated through middle-end
and backend layers of the SODA Synthesizer). We then discuss the
opportunities for further integration offered by the hardware compilation
infrastructure, providing a path towards the generation of complex
hybrid artificial intelligence systems.

Index Terms—MLIR, Artificial Neural Network Accelerators, Spiking
Neural Network Accelerators

I. INTRODUCTION

The exponential growth of interest in data analytics, machine learn-
ing, and artificial intelligence methods led to a “cambrian explosion”
of domain-specific architectures [1] to accelerate new algorithms and
methods as they get developed. Data scientists typically employ high-
level frameworks (in Python or similar functional languages), such
as TensorFlow, PyTorch, CNTK, to study, develop, and implement
algorithms. On the other hand, hardware designers typically need to
work at a different abstraction level by identifying key computational
kernels to build specialized functional units, datapaths, memory
components, and overall system design. Unfortunately, the rapid
evolution of the methods and the long and complicated hardware
development efforts generate fundamental productivity and time-to-
market gaps. High-level compilation frameworks (some tool specific,
like XLA [2] for TensorFlow, or Glow [3] for Pytorch, others
more general, like TVM [4]) try to address at least the aspects
of mapping “tensor-based” operations to specialized accelerators
(including general purpose graphic processing units with tensor cores,

tensor processing units, systolic arrays, coarse grained reconfigurable
arrays, and data flow architectures). While such frameworks constitute
a significant step ahead, underlying architectures typically still remain
optimized for only a subset of primitives, the ones that hardware
designers were able to identify and optimize upon, leaving many
other opportunities for optimizations largely unexplored.

Extending High-Level Synthesis (HLS) methodologies to (semi)-
automatically generate specialized accelerators in hardware descrip-
tion languages starting from specifications in high-level languages
appears a very promising strategy. Moving in this direction can
bridge the productivity gap while allowing, at the same time, a
complete exploration of hardware design points along various and
often contrasting metrics (not only performance, power, and area, but
also real-time requirements and ability to fit in specific autonomous
systems). Leveraging compiler-based frameworks, HLS can natu-
rally implement domain-specific optimizations as compiler passes,
recognize relevant code patterns, and generate efficient hardware
implementations.

A number of experimental approaches in this direction [5, 6, 7]
convert high-level operators from the Python-based frameworks into
HLS code “templates” written in C/C++, which are then synthesized
with commercial tools (Vivado HLS, Catapult C, etc), typically
targeting field programmable gate arrays (FPGAs). The software
defined accelerators (SODA) Synthesizer [8, 9], instead, adopts a
multi-layered, modular, fully open-source, compiler-based approach
with a high-level frontend and optimizer based on the multi-level
intermediate representation (MLIR) framework [10] to perform hard-
ware/software decomposition and domain-specific transformation,
and a synthesizer backend to generate custom Verilog modules
that could target different device technologies (FPGAs from various
vendors, as well as commercial and open-source application-specific
integrated circuit - ASIC). In SODA, translation across different
levels of abstraction is always performed with progressive lowerings
between intermediate representations (IRs). This approach allows for
an integrated flow of information that helps solve design exploration
challenges that arise due to semantic mismatches: in fact, directly
converting Python operators to an imperative language like C in-
evitably leads to losing analysis and optimizations opportunities. Pre-
optimized C code templates are a suboptimal solution to this problem.

Research on new domain-specific accelerators for artificial intelli-
gence is also leading to the exploration of neuromorphic computing,
i.e., models of computation that mimic how biological brains operate
and promise to perform machine learning tasks with orders of mag-
nitude higher efficiency than conventional “tensor-based” digital ap-
proaches. Spiking Neural Networks (SNN), in particular, incorporate

978-1-6654-4507-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

O
n

Co
m

pu
te

r A
id

ed
 D

es
ig

n
(IC

CA
D)

 |
 9

78
-1

-6
65

4-
45

07
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CA

D5
19

58
.2

02
1.

96
43

47
4

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

O
n

Co
m

pu
te

r A
id

ed
 D

es
ig

n
(IC

CA
D)

 |
 9

78
-1

-6
65

4-
45

07
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CA

D5
19

58
.2

02
1.

96
43

47
4

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:39:00 UTC from IEEE Xplore. Restrictions apply.

the concept of time in their operating model, transmitting information
(firing) when a “membrane potential” reaches a specific value. FPGAs
have been used in many cases to evaluate and implement SNNs;
a number of specialized devices that can run SNN models have
also been designed, both exploring the digital electronics domain
(e.g., IBM’s TrueNorth [11], Intel’s Lohihi [12]) and the analog
electronics domain (e.g., Georgia Tech’s Field Programmable Analog
Array [13]). FPGA implementations have also started to leverage
HLS techniques to quickly generate digital SNN accelerators, after
performing the necessary high-level transformations [14]. There is
a significant trend towards providing more structured solutions to
perform mapping and design space exploration for SNN accelerators.
However, their hardware and software interfaces, their integration in
complex systems with “conventional” accelerators, and the possibility
of exploring and implementing hybrid analog/digital systems remain
largely unexplored.

This paper discusses how the SODA’s end-to-end, multi-layered,
compiler-based framework can be adapted to support SNN models.
We identify the roadmap for integration, first introducing our current
approach to extend SODA’s MLIR-based frontend to support SNN
mapping leveraging the NeuroXplorer toolchain [15]. Then we sketch
subsequent steps that could enable the generation of a complete
hybrid digital and spiking neural network system, potentially allowing
such systems to be used for both inference (on the spiking part) and
training (on the conventional “digital” part). We finally provide a
perspective on how interoperable hardware compilers could further
allow the integration of hybrid digital and analog components in
complex heterogeneous systems, exploring new ideas in the area of
HW/SW codesign for artificial intelligence.

II. BACKGROUND

This section provides the background information needed to
discuss our approach for designing a generation infrastructure for
integrated conventional and spiking neural network accelerators. We
first introduce the SODA Synthesizer and its MLIR-based frontend,
providing information on why and how the MLIR framework is
employed. We then introduce SNNs and neuromorphic accelerators,
focusing particularly on how the NeuroXplorer framework can effi-
ciently map SNNs to neuromorphic hardware.

A. SODA Synthesizer

The SODA synthesizer answers to the request for fast and reliable
design automation for domain-specific hardware accelerators, with a
particular focus on the acceleration of machine learning applications.
Machine learning models, algorithms, and approaches are evolving
very quickly, with new application-specific methodologies rapidly
emerging in response to new problems. With the end of Dennard’s
scaling, general purpose architectures are experiencing diminishing
improvements, thus domain-specific accelerators are the only possi-
ble approach to keep increasing efficiency (performance per watt)
with current silicon manufacturing technologies. However, designing
hardware by hand is complex and time-consuming and hardly keeps
up with quick algorithmic evolution. Additionally, different target
applications have different performance, area and power consumption
requirements, and a hardware designer may want to explore a
variety of trade-offs among such metrics. A quick transition from an
algorithm formulation to a correspondent accelerator implementation
is thus highly desirable to explore possible designs with minimal
human interaction.

With SODA, we address the abstraction gap between high-level
algorithmic design and low-level hardware implementation by intro-

Translate to MLIR IR

MLIR and SODA Dialects

Analysis & high-level optimization

Low-Level IR

Analysis & low-level optimization

Template
based

synthesis

Allocation

Scheduling

Binding

Modules (RTL IR)

System (RTL IR)

Verilog

Frontend

Middle-End

Backend

Synthesizer

Design Space
Exploration
Algorithms

Templates

Components

GDS2

Constraints

Resource Library

Metrics

High-Level
(ML)

Framework

ML Model

Chip Design

DSL

Evaluation

Fig. 1. SODA - A framework for generation of custom accelerators

ducing a modular, multi-level, and extensible open-source compiler-
based framework. SODA is composed of a compiler-based frontend,
a compiler-based middle-end, and a compiler-based backend, which
work together to generate synthesizable Verilog for a variety of
targets.

SODA leverages a multi-level compiler infrastructure to perform
optimizations all along the compilation flow, selecting the correct
level of abstraction and promoting separation of concerns to increase
modularity. The compilation process includes high-level transfor-
mations and optimizations, a hardware synthesis middle-end which
supports various conventional and templated high-level synthesis
methodologies, and a backend to generate hardware description
language files (Verilog, in our case). Figure 1 showcases the various
steps involved in the generation of GDSII layouts for ASICs, which
is one of the possible synthesis flows enabled by SODA.

The multi-layered, compiler-based approach of the SODA infras-
tructure is further supported by the adoption of the Multi-Level
Intermediate Representation (MLIR) [10] in the SODA-OPT frontend.
MLIR provides a framework to implement reusable compiler infras-
tructures, leveraging a meta-IR, inspired by the LLVM IR, that allows
defining specialized IRs (dialects) at different levels of abstractions,
which tackle specific types of transformations and optimizations. Such
an approach is particularly suited to support domain-specific compilation
pipelines for specialized architectures and has been proven valuable,
among the other things, within the TensorFlow 2.0 runtime. MLIR
has been integrated in the overall LLVM infrastructure and provides
several dialects of general interest (e.g., linalg, scf) together with
many others pertaining to specific high-level frameworks, optimizations,

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:39:00 UTC from IEEE Xplore. Restrictions apply.

or architectures. By supporting MLIR and its dialects we make our
framework available to any application designed with tools that provide a
translation into MLIR: this includes TensorFlow and ONNX for machine
learning and deep learning algorithms, but can be of interest to many
other domain-specific frameworks or languages.

SODA-OPT starts by parsing input models produced by machine
learning high-level frameworks: it identifies dataflow segments that are
amenable to hardware acceleration, outlines the relevant regions, and
performs high-level optimizations. Regions of code which are not selected
for acceleration are equipped with interfacing code and runtime calls
that will connect the host microcontroller to the generated accelerator.
Eventually, the frontend feeds a pre-optimized lower-level Intermediate
Representation to the SODA middle-end, which is ready to perform the
first target-specific transformations. SODA-OPT exploits its own soda
dialect, which provides the necessary abstraction to search and outline
code patterns that need to be lowered to other dialects, and finally
implemented on hardware. Other custom dialects can be implemented
in the frontend for specific purposes, as will be the case for the snn
dialect described in Section III-B.

The SODA middle-end and backend components perform target-
specific optimizations on the code outlined by the frontend. Frontend
and middle-ends communicate by exchanging compiler IRs, in particular
LLVM IR, which is a natural target of MLIR lowering pipelines. For
example, one of the SODA synthesizer middle-ends is the open-source
HLS tool Bambu [16], which supports the generation of classic finite state
machine with datapath (FSMD) architectures but also offers advanced
parallel multithreaded accelerator templates with complex memory sub-
systems [17]. Bambu supports FPGA devices from a variety of vendors,
with specialized functional units implemented for each specific target,
and we also recently extended it to interface with the OpenROAD flow
providing a fully open-source ASIC backend.

Another experimental SODA backend leverages an LLVM-based syn-
thesizer able to generate hardware descriptions in a circuit-level IR,
currently FIRRTL [18]. We argue that further decoupling the hardware
generation process from the actual code generation provides the op-
portunity to perform new types of optimizations at the system level
(i.e., between hardware modules), and better specialize the generated
HDL code for the target device without need for hand tuning. Similar
principles and concepts are currently being explored within the CIRCT
(Circuit IR Compilers and Tools [19]) LLVM incubator project, which is
implemented within the MLIR framework and thus represents a possible
target for future integration with the SODA Synthesizer.

B. Spiking Neural Networks and Neuromorphic Accelerators

Spiking Neural Networks (SNNs) enable powerful computations due
to their spatio-temporal information encoding capabilities [20]. In an
SNN, spikes (i.e., current) injected from pre-synaptic neurons raise the
membrane voltage of a post-synaptic neuron (see the middle sub-figure
of Figure 2). When the membrane voltage crosses a threshold (Vth in
the figure), the post-synaptic neuron emits spikes that propagate to other
neurons (see the right sub-figure of Figure 2). SNNs implement some
variants of Integrate and Fire (I&F) neurons with a spike duration ranging
from 1 µs to several ms [21] (see the left sub-figure of Figure 2).

Fig. 2. A leaky integrate-and-fire (LIF) neuron with current input U(t) (left).
The membrane potential over time of the neuron (middle). The spike output
of the neuron representing its firing time (right).

SNNs can implement different machine learning approaches. Examples
include deep learning [22], liquid state machine [23], and reinforcement

learning [24]. We focus on inference, referring to feeding live data points
to a trained SNN in order to generate the corresponding output.

SNNs are executed on many-core neuromorphic accelerators such as
TrueNorth [11], Loihi [12], and SpiNNaker [25]. Figure 3(a) shows the
tile-based architecture of such an accelerator, where each tile consists
of 1) a neuromorphic processing core that integrates neuron circuitry
and synaptic storage and 2) a network interface to communicate spike
packets over a shared interconnect such as Network-on-Chip (NoC) [26]
and Segmented Bus [27]. A common practice is to design the processing
core as a crossbar (see Figure 3(b)), where the synaptic cells are organized
in a two-dimensional grid, with neuron circuitry placed along bitlines and
wordlines [28].

T00 T01 T02 T03 T04 T05 T06 T07

T08 T09 T10 T11 T12 T13 T14 T15

T16 T17 T18 T19 T20 T21 T22 T23

T24 T25 T26 T27 T28 T29 T30 T31

T32 T33 T34 T35 T36 T37 T38 T39

T40 T41 T42 T43 T44 T45 T46 T47

T48 T49 T50 T51 T52 T53 T54 T55

T56 T57 T58 T59 T60 T61 T62 T63

(a) A many-core neuromorphic
accelerator.

Post-Synaptic Neurons

Pr
e-

Sy
na

pt
ic

 N
eu

ro
ns

w
or

dl
in

es

bitlines

(b) Analog crossbar-based neuromor-
phic processing core.

Fig. 3. Tile-based neuromorphic accelerator and crossbar architecture.

To map SNNs to a many-core neuromorphic accelerator, a system
software such as NEUTRAMS [29], SpiNeMap [30], Corelet [31], and
NeuroXplorer [15] is used. These software frameworks consist of 1) a
compiler to partition an SNN into clusters, such that each cluster can
fit onto a core of the accelerator, and 2) a run-time manager to allocate
clusters to cores, improving energy [32], reliability [33], endurance [34],
or inference lifetime [35].

To enable efficient compilation of SNNs, dataflow-based techniques
are commonly used [36]. An SNN is represented as a dataflow graph,
where nodes represent neurons and edges represent synaptic connections
(See Figure 4a). Formally,

Definition 1: (SNN GRAPH) An SNN GSNN = (N,S) is a directed
graph consisting of a finite set N of nodes, representing neurons and
a finite set S of edges, representing synapses.

A dataflow compiler partitions an SNN into clusters, where each
cluster consists of a subset of neurons and synapses of the SNN.
Partitioning algorithm incorporates the resource constraints of a core,
allowing the clusters to be mapped to cores of the many-core accelerator.
In many recent works [30, 36, 37], partitioning is performed using
a variant of the Kernighan–Lin graph partitioning heuristic with the
objective of minimizing the spike communication between the clusters
(see for instance Figure 4b). This leads to reduced latency of the shared
interconnect where the inter-cluster communication links are mapped.
Formally,

Definition 2: (CLUSTERED SNN GRAPH) A clustered SNN graph
GCSNN = (C,E) is a directed graph consisting of a finite set C

of clusters and a finite set E of edges between these clusters.
A clustered SNN graph can be represented as a Synchronous Dataflow

Graph (SDFG), where each cluster is represented as an actor and the
inter-cluster communication channels are represented as edges. Each actor
is associated with a set of input and output ports to which the incoming
and outgoing edges are connected, respectively. Actor communicates by
exchanging tokens on edges, which represent spikes. A spike is encoded
as an address event representation (AER) data packet with a payload
containing the address of clusters, where the destination neurons are
mapped. In representing a clustered SNN graph as an SDFG, each
communication channel between a pair of neurons that are mapped to
two different clusters is represented as an edge between the clusters.

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:39:00 UTC from IEEE Xplore. Restrictions apply.

16

12

18

17

8

11

Cluster 1

Cluester 2

16

12

18

17

8

11

Cluster 1

Cluster 2

(a) SNN Graph (b) Partitioning of SNN Graph (c) Clustered SNN Graph

8

Fig. 4. (a) Representing an SNN graph. (b) Partitioning the SNN graph into
two clusters. (c) Representing a clustered SNN graph.

Therefore, multiple incoming/outgoing edges may exist between any two
pair of clusters. Additionally, each actor has port association based on
its neurons and their connectivity. An actor is called ready, when it has
sufficient number of tokens on the input ports of any of its neurons.
Once a neuron in an actor fires, it generates tokens on all the output
ports associated with the neuron. Therefore, in the SDFG representation
of a clustered SNN graph, tokens are generated on a subset of the output
ports, rather than on all output ports as in the original SDFG formalism.

Figure 5 illustrates the NeuroXplorer framework [15], which estimates
the performance of an SNN using dataflow analysis techniques. The
framework can work with both Artificial Neural Networks (ANNs) and
biology-inspired Spiking Neural Networks (SNNs). NeuroXplorer inter-
faces with ANN workloads that are specified in high-level frameworks
such as Tensorflow and PyTorch. To analyze an ANN workload for an
event-driven neuromorphic hardware, the workload is first converted to
an SNN using the SNN Conversion unit, and later the SNN is simulated
using the SNN Simulation unit.

Alternatively, an SNN workload can be specified in PyNN [38] or
PyCARL [39], which are Python interfaces to SNN simulators such
as CARLsim [40], Brian [41], NEST [42], and Neuron [43]. These
simulators model neural functions at various levels of detail and therefore
have different requirements for computational resources. An SNN model
can also be specified directly using these simulators.

SNN
Simulation

SNN
Conversion

Model
Clustering

ANN
Workload

SNN
Workload

Data-flow
Analysis

Workload
Decomposition

Model
Training

CARLsim Brian NEST Neuron

Fig. 5. A design flow to estimate performance of an SNN using dataflow
analysis techniques.

The next step in the NeuroXplorer framework is the workload decom-
position unit, where the simulated SNN workload is decomposed into fan-
in-of-two (FIT) neural units to allow mapping them onto the processing
cores of a neuromorphic hardware [44]. The decomposed SNN workload
is then clustered using the Model Clustering unit, which uses a variant of
the Kernighan–Lin graph partitioning heuristic to minimize inter-cluster
spike communication [45]. Finally, the Dataflow Analysis unit converts
the clustered SNN graph into SDFG representation and uses Max Plus
Algebra to analyze performance, e.g., throughput for a given mapping of
clusters to cores of the hardware [46]. NeuroXplorer can also be used to
perform mapping explorations beyond load balancing.

Figure 6 illustrates the mapping of actors generated from the LeNet
SNN model (circles) to the tiles of a neuromorphic hardware (rectangles)
using the NeuroXplorer framework.

III. SNN INTEGRATION IN SODA
This section discusses how the SODA Synthesizer can be extended

and adapted to generate accelerators for SNNs, learning and integrating
features from the NeuroXplorer framework described in Section II-B.
We aim at exploiting MLIR dialects and optimizations to translate a pre-
trained ANN into an SNN, optimize it, and deploy it on specialized
hardware. Section III-A describes the transformations involved in the

Fig. 6. LeNet platform mapping.

SODA SNN deployment flow, while Section III-B dives into the details
of the proposed SNN dialect.

A. SNN deployment flow
Figure 7 divides the steps needed to generate an SNN accelerator in

SODA into three groups, which correspond to three different development
phases. In the first phase, the SODA frontend is modified to allow pre-
trained models to SNN conversion and SNN emulation. The second and
third phase produce two alternative deployment flows: one exploits the
NeuroXplorer tools to program an existing neuromorphic chip, while the
other synthesizes a custom hardware accelerator.

As in the original SODA flow, we expect the input to be a neural
network model trained in a high-level software framework and translated
to MLIR IR containing, for example, operations in the tf or tosa
dialects. All the lowering and optimization passes that are already present
in the SODA frontend can be applied, if beneficial, before the conversion
to the snn dialect. The SNN conversion is the most relevant aspect of
this first development phase, as it can impact the accuracy of the network:
for this reason, we develop a specific dialect to represent neurons, spikes,
and other SNN characteristics. This dedicated dialect also exposes further
opportunities for optimizations that are specific to SNN models, and
would not be accessible to the frontend with the direct conversion of
the NeuroXplorer design flow. Operations and types of the snn dialect
are then lowered and translated to LLVM IR for software execution, in
order to emulate the behavior of the network on a test dataset, verify
whether the initial accuracy was maintained within an acceptable error
range, and collect data about spike times for all neurons in the network.

The second development phase aims at integrating the NeuroXplorer
tools in the design flow, providing a path to map the input network to
a neuromorphic crossbar-based accelerator. The original first steps that
were depicted in Figure 5 are substituted by the SNN conversion and
software emulation within SODA; the missing link before decomposition,

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:39:00 UTC from IEEE Xplore. Restrictions apply.

SNN conversion

 LLVM IR
for emulation

 Spike data

translation

emulation

Decomposed
model

decomposition

Clustered
 graph (SDFG)

Instructions
for a

neuromorphic chip

clustering
mapping to
crossbars

snn tensortf

SNN
model

optimizations

tosa

Trained
NN model

Neuron
connections +

Spike data

Spike data +
SNN model

translation

snn tensor

Synthesis-ready
IR

lowering

Hardware design

synthesis

Spike data +
SNN model

optimization

snn tensor snn tensor

Optimized SNN
model

Phase 1: SNN modeling and software emulation
Phase 3: generation of custom hardware

Phase 2: integration of the NeuroXplorer tools

Fig. 7. Evolution of the SNN flow in SODA.

clustering, and mapping is a translation from the MLIR SNN model into
NeuroXplorer’s internal representation of spiking neurons connectivity
and their individual spiking behaviour.

Instead of relying on existing neuromorphic architectures, the third
development phase aims at generating custom hardware designs, possibly
combining analog and digital elements. Here, the SNN model generated
by the frontend is further optimized in the SODA middle-end and
backend, where information about the target hardware can be exploited
alongside the spike data gathered during software emulation. The final
form of the SNN model after the middle-end transformations is again
an IR, in a synthesis-ready abstraction suited to the backend tools that
will generate the accelerator design in a hardware description language.
In the existing SODA HLS flow, the synthesis IR is an LLVM IR
that is fed to Bambu HLS to generate Verilog code for ASIC/FPGA.
For a neuromorphic architecture the synthesis IR may need to describe
both analog and digital blocks, and the interfaces between them; the
synthesizer would then combine pre-existing IPs and custom logic to
generate the design and integrate it in a full system with other accelerators
generated by SODA flows.

B. SNN dialect
The proposed snn dialect implements an intermediate representation

that captures intrinsics of SNN models. In its design we developed types
to represent the data that flows during SNN execution and operations
representing the transformations applied to the data. Figure 8 shows the
key concepts that we strive to capture in the dialect.

LIF
Neuron
Operation

a

a

a

a

Spike Train Bundle

w0

w1

w2

Weights
Tensor

b

Bias Value

Spike Train

snn.neuron(spike_train_bundle, W, b) -> spike_train

Fig. 8. The snn.neuron operation.

Types - The MLIR code below represents the train of timestamps on
which spikes occur and N-dimension bundles of spike trains. These are
the key types in the snn dialect.

!spkt_t = snn.spike_train<?xf32>
!spk1db_t = snn.spike_bundle<?x snn.spike_train<?xf32>>
!spk2db_t = snn.spike_bundle<?x?x snn.spike_train<?xf32>>

Spike train conversions - We use the following operations to generate
a spike train from a list of times or extract the list of spike times from
a spike train, converting our types into or out of the SNN domain.

%spike_train = snn.encode_spike_train(%list_of_times :
tensor<?xf32>) : !spkt_t

%list_of_times = snn.decode_spike_train(%spike_train :
!spkt_t) : tensor<?xf32>

Spike bundle conversions - The following MLIR operations are used
to perform bulk conversions of inputs to bundles of spike trains. Each
input inside the tensor is converted into a unique spike train.

%spk_bundle = snn.tensor_to_spike_train_bundle(data :
tensor<?x?xf32>) : !spk2db_t

%data = snn.spike_bundle_to_tensor(%sb : !spk2db_t) :
tensor<?x?xf32>

Spike train slicing and bundling - We propose the following operations
to group several spike trains in a bundle or select a spike train from a
bundle. The snn dialect implements additional operations in this category
to provide finer grained control of spike train bundles that ease dataflow
analysis, however these operations are omitted here for simplicity.

%spk_train = snn.spike_bundle_select (%spk_bundle[%i, %j] :
!spk2db_t) : !spkt_t

%spk_bundle2 = snn.spike_bundle_collect (%spk : !spkt_t ,
%spk : !spkt_t , ...) : !spk1db_t

Neuron operations - Currently modeling the behaviour of LIF neurons,
the following operations represent the analog transformation shown in
Figure 2 and Figure 8. The output spike train generated by this operation
takes in consideration the input spike trains multiplied by the weights
(modeling LIF neuron resistances R), the neuron Bias (that can increase
the neuron’s resting potential), and the LIF neuron intrinsic attributes of
V th, V rest, k, discussed in Section III-C.

%id0 = snn.neuron (%in : !spkt_t) : !spkt_t // Input neuron
%id1 = snn.neuron (%in_spikes : !spk1db_t , W :

tensor<?xf32> , bias : f32) : !spkt_t

Ordering operations - These operations create a tensor with the
direct (or reverse) order of which spike trains spiked first. The output
tensor has the same size as the 1-D bundle size. These operations are

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:39:00 UTC from IEEE Xplore. Restrictions apply.

used in evaluation of which category is most important on a category
classification problem.

%d_order = snn.get_order(%out_spikes : !spk1db_t) :
tensor<?xindex>

%r_order = snn.get_rev_order(%out_spikes : !spk1db_t) :
tensor<?xindex>

C. SNN example

Figure 9 shows an example of 2-input 2-output fully connected SNN
model described using the snn dialect. It demonstrates how a SNN model
can interface with inputs in the digital domain represented with tensors
by using spike train conversions, spike bundle conversions, and ordering
operations, as well as how spike trains are manipulated in the SNN
domain to represent our fully connected model.

1 module attributes {soda.snn.container_module, snn.lif.k=1,
2 snn.lif.vth=30, snn.lif.vrest=-20}{
3 !spkt_t = snn.spike_train<?xf32>
4 !spk1db_t = snn.spike_bundle<?x snn.spike_train<?xf32>>
5

6 func @dense_2(%data: tensor<2xf32> ,
7 %W : tensor<2x2xf32> ,
8 %B : tensor<2xf32>) -> tensor<2xindex>){
9 // Use tensor.extract_slice and tensor.extract ops

10 // to collect %w_1_0, %w_1_1, %b_1_0, %b_1_1
11 // from %W and %B input arguments.
12

13 // Input Layer
14 %in = snn.tensor_to_spike_train_bundle(%data :

tensor<2xf32>) : !spk2db_t
15 %in_0 = snn.spike_bundle_select (%in[0] : !spk1db_t) :

!spkt_t
16 %in_1 = snn.spike_bundle_select (%in[1] : !spk1db_t) :

!spkt_t
17 %v_0_0 = snn.neuron (%in_0 : !spkt_t)
18 %v_0_1 = snn.neuron (%in_1 : !spkt_t)
19 %v_0 = snn.spike_bundle_collect (%v_0_0 : !spkt_t ,

%v_0_1 : !spkt_t) : !spk1db_t
20

21 // Hidden/Output Layer
22 %v_1_0 = snn.neuron (%v_0 : !spk1db_t , %w_1_0 :

tensor<2xf32> , %b_1_0 : f32)
23 %v_1_1 = snn.neuron (%v_0 : !spk1db_t , %w_1_1 :

tensor<2xf32> , %b_1_1 : f32)
24 %v_1 = snn.spike_bundle_collect (%v_1_0 : !spkt_t ,

%v_1_1 : !spkt_t) : !spk1db_t
25

26 // Output transformation
27 %order = snn.get_order(%out_spikes : !spk1db_t) :

tensor<?xindex>
28 %out = tensor.cast %order : tensor<?xindex> to

tensor<2xindex>
29 return %out
30 } }

Fig. 9. Two-Neuron fully connected model.

In additional to the types and operations previously described, Figure 9
also presents important module attributes associated with LIF neurons
characteristics shared by all neurons in a given target chip. The snn.lif
.vth and snn.lif.vrest attributes represent the firing threshold and
resting potential in mV of a LIF neuron; and snn.lif.k represents the
constant that multiplies the neuron’s discharge rate dv/dt. These values
must be know for optimizations such as neuron decomposition [36] or to
perform SNN emulation.

The example described in Figure 9 provides abstractions in two
domains, a purely digital domain captured by tensors and their values,
and the SNN domain, abstracted by types and operations in our proposed
dialect. Although analog models ultimately govern some SNN operations
(such as the LIF neuron operation), digital logic circuits can mimic their
behavior. Henceforth, the snn dialect can be lowered, translated, and
mapped to purely digital resource elements. In this way, phase three of
our integration may start from adapting the existing HLS-based flow to
support the digital versions of SNN operations, and later enable an analog
resource library with dedicated middle-end and backend for mixed-circuit
design.

IV. CONCLUSION

This paper discusses the opportunities to integrate conventional arti-
ficial neural networks techniques and spiking neural networks elements
by providing a modern, modular, multi-level, end-to-end compiler-based
infrastructure that automatically generates domain-specific accelerators.
Specifically, we presented our initial approach for the integration of the
NeuroXplorer framework with the SODA Synthesizer. Leveraging the
MLIR framework, the SODA frontend allows defining and interfacing
with a new specialized IR (the SNN dialect) that deals with the complex-
ities related to SNN representation and mapping. The SODA synthesizer
middle-ends provide support to generate Verilog code representing spik-
ing neurons in digital logic that can be mapped onto FPGAs or ASICs.
Down the road, the adoption of interoperable hardware compiler-based
infrastructures can further provide opportunities to define and integrate,
in a single complex heterogeneous system, ML accelerators composed
of both digital and analog components. The SODA synthesizer will be
a crucial element providing compiler methods to map the software onto
the hardware, and to solve challenges connected to the integration of
modules that leverage intrinsically different technologies.

REFERENCES

[1] J. Hennessy and D. Patterson, “A new golden age for computer architec-
ture: Domain-specific hardware/software co-design, enhanced security,
open instruction sets, and agile chip development,” in 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA),
2018, pp. 27–29.

[2] C. Leary and T. Wang, “XLA: TensorFlow, compiled,” 2017. [Online].
Available: https://www.tensorflow.org/xla

[3] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein, J. Montgomery,
B. Maher, S. Nadathur, J. Olesen, J. Park, A. Rakhov, M. Smelyanskiy,
and M. Wang, “Glow: Graph lowering compiler techniques for neural
networks,” 2019.

[4] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
An Automated End-to-End Optimizing Compiler for Deep Learning,” in
OSDI. USA: USENIX Association, 2018, p. 579–594.

[5] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis et al.,
“Fast inference of deep neural networks in FPGAs for particle physics,”
Journal of Instrumentation, vol. 13, no. 07, p. P07027, 2018.

[6] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu et al., “FINN-R: An end-to-end deep-learning framework
for fast exploration of quantized neural networks,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 11, no. 3, pp.
1–23, 2018.

[7] X. Zhang, H. Ye, J. Wang, Y. Lin, J. Xiong, W. Hwu, and D. Chen,
“DNNExplorer: A framework for modeling and exploring a novel
paradigm of FPGA-based DNN accelerator,” in ICCAD. San Diego,
CA, USA: IEEE, 2020, pp. 1–9.

[8] M. Minutoli, V. G. Castellana, C. Tan, J. Manzano, V. Amatya,
A. Tumeo, D. Brooks, and G. Y. Wei, “SODA: A new synthesis in-
frastructure for agile hardware design of machine learning accelerators,”
in International Conference On Computer Aided Design (ICCAD), 2020,
pp. 1–7.

[9] J. J. Zhang, N. Bohm Agostini, S. Song, C. Tan, A. Limaye, V. Amatya,
J. Manzano, M. Minutoli, V. G. Castellana, A. Tumeo, G. Y. Wei, and
D. Brooks, “Towards Automatic and Agile AI/ML Accelerator Design
with End-to-End Synthesis,” in 2021 IEEE 32nd International Con-
ference on Application-specific Systems, Architectures and Processors
(ASAP), 2021, pp. 218–225.

[10] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scaling
Compiler Infrastructure for Domain Specific Computation,” in CGO.
Seoul, Korea (South): IEEE, 2021, pp. 2–14.

[11] M. V. Debole, B. Taba, A. Amir, F. Akopyan, A. Andreopoulos, W. P.
Risk, J. Kusnitz, C. O. Otero, T. K. Nayak, R. Appuswamy, P. J.
Carlson, A. S. Cassidy, P. Datta, S. K. Esser, G. J. Garreau, K. L.
Holland, S. Lekuch, M. Mastro, J. Mckinstry, C. Di Nolfo, J. Sawada,
B. Paulovicks, K. Schleupen, B. G. Shaw, J. L. Klamo, M. D. Flickner,
J. V. Arthur, and D. S. Modha, “TrueNorth: Accelerating from zero to
64 million neurons in 10 years,” Computer, 2019.

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:39:00 UTC from IEEE Xplore. Restrictions apply.

[12] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. K. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y. H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, 2018.

[13] J. Hasler, “Large-Scale Field-Programmable Analog Arrays,” Proceed-
ings of the IEEE, vol. 108, no. 8, pp. 1283–1302, 2020.

[14] S. Panchapakesan, Z. Fang, and J. Li, “SyncNN: Evaluating and Acceler-
ating Spiking Neural Networks on FPGAs,” in International Conference
on Field-Programmable Logic and Applications (FPL), 2021.

[15] A. Balaji, S. Song, T. Titirsha, A. Das, J. Krichmar, N. Dutt, J. Shackle-
ford, N. Kandasamy, and F. Catthoor, “NeuroXplorer 1.0: An extensible
framework for architectural exploration with spiking neural networks,”
in ICONS, 2021.

[16] F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito,
M. Lattuada, M. Minutoli, C. Pilato, and A. Tumeo, “Bambu: an Open-
Source Research Framework for the High-Level Synthesis of Complex
Applications,” in DAC. IEEE, 2021.

[17] M. Minutoli, V. Castellana, N. Saporetti, S. Devecchi, M. Lattuada,
P. Fezzardi, A. Tumeo, and F. Ferrandi, “Svelto: High-Level Synthesis of
Multi-Threaded Accelerators for Graph Analytics,” IEEE Transactions
on Computers, no. 01, pp. 1–14, feb 2021.

[18] P. S. Li, A. M. Izraelevitz, and J. Bachrach, “Specification for
the FIRRTL Language,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-9, Feb 2016. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html

[19] C. Developers, “”CIRCT” / Circuit IR Compilers and Tools,” 2020.
[Online]. Available: https://github.com/llvm/circt

[20] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Networks, 1997.

[21] S. Fusi and M. Mattia, “Collective behavior of networks with linear
(VLSI) integrate-and-fire neurons,” Neural Computation, 1999.

[22] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural Networks,
2019.

[23] A. Das, P. Pradhapan, W. Groenendaal, P. Adiraju, R. Rajan, F. Catthoor,
S. Schaafsma, J. Krichmar, N. Dutt, and C. Van Hoof, “Unsupervised
heart-rate estimation in wearables with Liquid states and a probabilistic
readout,” Neural Networks, 2018.

[24] M. S. Shim and P. Li, “Biologically inspired reinforcement learning for
mobile robot collision avoidance,” in IJCNN, 2017.

[25] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
project,” Proceedings of the IEEE, 2014.

[26] X. Liu, W. Wen, X. Qian, H. Li, and Y. Chen, “Neu-NoC: A high-
efficient interconnection network for accelerated neuromorphic systems,”
in ASP-DAC, 2018.

[27] A. Balaji, Y. Wu, A. Das, F. Catthoor, and S. Schaafsma, “Exploration
of segmented bus as scalable global interconnect for neuromorphic
computing,” in GLSVLSI, 2019.

[28] C. Liu, B. Yan, C. Yang, L. Song, Z. Li, B. Liu, Y. Chen, H. Li, Q. Wu,
and H. Jiang, “A spiking neuromorphic design with resistive crossbar,”
in DAC, 2015.

[29] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
“NEUTRAMS: Neural network transformation and co-design under
neuromorphic hardware constraints,” in MICRO, 2016.

[30] A. Balaji, A. Das, Y. Wu, K. Huynh, F. G. Dell’anna, G. Indiveri, J. L.
Krichmar, N. D. Dutt, S. Schaafsma, and F. Catthoor, “Mapping spiking
neural networks to neuromorphic hardware,” TVLSI, 2020.

[31] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K. Esser,
A. Andreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza et al.,
“Cognitive computing programming paradigm: a corelet language for
composing networks of neurosynaptic cores,” in IJCNN, 2013.

[32] T. Titirsha, S. Song, A. Balaji, and A. Das, “On the role of system
software in energy management of neuromorphic computing,” in CF,
2021.

[33] S. Song, J. Hanamshet, A. Balaji, A. Das, J. Krichmar, N. Dutt,
N. Kandasamy, and F. Catthoor, “Dynamic reliability management in
neuromorphic computing,” JETC, 2021.

[34] T. Titirsha, S. Song, A. Das, J. Krichmar, N. Dutt, N. Kandasamy, and
F. Catthoor, “Endurance-aware mapping of spiking neural networks to
neuromorphic hardware,” TPDS, 2021.

[35] S. Song, T. Titirsha, and A. Das, “Improving inference lifetime of
neuromorphic systems via intelligent synapse mapping,” in ASAP, 2021.

[36] S. Song, L. V. Mirtinti, A. Das, and N. Kandasamy, “A design flow for
mapping spiking neural networks to many-core neuromorphic hardware,”
in ICCAD, 2021.

[37] C.-K. Lin, A. Wild, G. N. Chinya, T.-H. Lin, M. Davies, and H. Wang,
“Mapping spiking neural networks onto a manycore neuromorphic
architecture,” in PLDI, 2018.

[38] A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. Muller,
D. Pecevski, L. Perrinet, and P. Yger, “PyNN: a common interface for
neuronal network simulators,” Frontiers in Neuroinformatics, 2009.

[39] A. Balaji, P. Adiraju, H. J. Kashyap, A. Das, J. L. Krichmar, N. D. Dutt,
and F. Catthoor, “PyCARL: A PyNN interface for hardware-software co-
simulation of spiking neural network,” in IJCNN, 2020.

[40] T. Chou, H. Kashyap, J. Xing, S. Listopad, E. Rounds, M. Beyeler,
N. Dutt, and J. Krichmar, “CARLsim 4: An open source library for
large scale, biologically detailed spiking neural network simulation using
heterogeneous clusters,” in IJCNN, 2018.

[41] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in
Neuroscience, 2009.

[42] J. M. Eppler, M. Helias, E. Muller, M. Diesmann, and M.-O. Gewaltig,
“PyNEST: a convenient interface to the NEST simulator,” Frontiers in
Neuroinformatics, 2009.

[43] M. L. Hines and N. T. Carnevale, “The NEURON simulation environ-
ment,” Neural Computation, 1997.

[44] A. Balaji, S. Song, A. Das, J. Krichmar, N. Dutt, J. Shackleford,
N. Kandasamy, and F. Catthoor, “Enabling resource-aware mapping of
spiking neural networks via spatial decomposition,” ESL, 2020.

[45] A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor, and S. Schaaf-
sma, “Mapping of local and global synapses on spiking neuromorphic
hardware,” in DATE, 2018.

[46] S. Song, A. Balaji, A. Das, N. Kandasamy, and J. Shackleford, “Com-
piling spiking neural networks to neuromorphic hardware,” in LCTES,
2020.

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 11,2023 at 23:39:00 UTC from IEEE Xplore. Restrictions apply.

		2022-08-25T00:05:12-0400
	Preflight Ticket Signature

