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ABSTRACT

Diversely Heterogeneous System-on-Chips (DH-SoC) are increas-
ingly popular computing platforms in many fields, such as au-
tonomous driving and AR/VR applications, due to their ability to
effectively balance performance and energy efficiency. Having mul-
tiple target accelerators for multiple concurrent workloads requires
a careful runtime analysis of scheduling. In this study, we examine
a scenario that mandates several concerns to be carefully addressed:
1) exploring the mapping of various workloads to heterogeneous
accelerators to optimize the system for better performance, 2) an-
alyzing data from the physical world in runtime to minimize the
response time of the system 3) accurately estimating the resource
contention by workloads during runtime since there will be con-
current operations running under the same die, and 4) deferring
the operation to the cloud for computationally more demanding
operations such as continuous learning or real-time rendering, de-
pending on the complexity of the computation. We demonstrate
our analysis and approach on a VR project as a case study by us-
ing NVIDIA Xavier NX Edge DH-SoC and a server equipped with
NVIDIA GeForce RTX 3080 GPU and AMD EPYC 7402 CPU.
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1 INTRODUCTION

Predicting the performance of applications accurately on different
computer architectures has become increasingly complex [3, 5, 8,
18] due to the wide variation in design parameters for intra-device
(i.e., type of processing units (PUs), number of cores in a PU, and
memory) and inter-device (i.e., network bandwidth and edge-cloud
systems). These predictions play a critical role in decision-making
for task management, resource allocation, runtime choices, and
system design. For accurate performance prediction, models and
tools should be precise, flexible, and efficient while being easy to
scale, develop, and maintain across various domains. Otherwise,
incorrect predictions could lead to wasted resources, such as time
and energy.

To address the demanding performance and energy needs of
emerging application domains such as computer vision, AR/VR,
and autonomous systems, DH-SoCs combine general-purpose and
specialized processors such as machine learning accelerators and au-
dio/video codecs to achieve higher efficiency. Compared to general-
purpose processors, DH-SoCs provide significantly better perfor-
mance and energy efficiency for targeted areas of use. For exam-
ple, autonomous drones perform several computationally intensive
tasks, and DH-SoCs employ a diverse range of accelerators that can
efficiently execute those tasks: vision accelerators for perception
workloads, GPUs and/or FPGAs for localization and motion plan-
ning, Al accelerators for deep learning operations, and CPU cores
for communication and scheduling [13, 22].

Efficiently mapping different workloads onto heterogeneous
computing units to achieve optimal performance or energy effi-
ciency is a challenging task. Effectively utilizing computing re-
sources and optimally managing them is key to achieving efficient
use of DH-SoCs. This involves considering several factors including:
1) Collaborative Edge and Cloud Systems: Offloading some work-
loads to cloud servers may generate significant speed-ups when
DH-SoCs lack high-performance processing units. However, accu-
rately estimating the underlying performance model is necessary
to efficiently utilize the cloud system to ensure computation time
on the cloud is less than on the DH-SoC. 2) Computational char-
acteristics: Heterogeneous accelerators exhibit varying execution
time characteristics for different workloads. An optimal schedule
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must target assigning workloads to the best-performing accelerator
while also considering other candidate accelerators. 3) Resource con-
tention: Shared resources, such as memory, will be simultaneously
accessed by multiple PUs on the system, resulting in significant
slowdowns that should be minimized. 4) Data-dependent control
flow graph (CFG): The CFG can vary based on real-world scenarios,
such as a moving object that requires fast object detection in an
autonomous system or a sudden movement of a VR glass that neces-
sitates complex but low-latency rendering. Minimizing the system’s
response time is crucial to ensure system safety or improve quality
of service (QoS).

There have been a wide range of efforts to model heterogeneous
execution. However, research focused on heterogeneous schedul-
ing for systems at the higher end of the diversity spectrum has
either made certain assumptions to mitigate the complex and ex-
tensive design space that must be considered or failed to present
a comprehensive model applicable to various scenarios. We can
categorize them into three major classes: black-box, white-box, and
hybrid. The first approach [7, 15, 17] mostly relies on heuristics
to reduce the complexity of expensive experiment costs but still
suffers from high sampling costs. On the other hand, white-box ap-
proaches [16, 21, 23] model numerical options but require expensive
computation for profiling and significant effort for the implementa-
tion to explore the interactions among design candidates. Hybrid
methods, combining white- and black-box approaches, [1, 4, 6] are
explored for online modeling and the goal is to eliminate the depen-
dency of performance modeling tools for a single feature, such as
entirely static dataflow analysis or perfect loop modeling, by analyt-
ically and/or empirically combining multiple features onto a model.
However, none of the approaches listed are generalizable and flexi-
ble enough to represent and model the computational complexity
presented by deploying DH-SoCs on an edge-cloud systems. There-
fore, there is a pressing need for advanced models and tools that
can accurately predict the performance of workloads at runtime
across different computer architectures and can be easily adapted
to various domains.

Our preliminary research has shown that different stages of a
workload have unique computation characteristics depending on
the platform and accelerator being used. So, a holistic mapping
approach is required in order to exploit the advantages of hetero-
geneity and fully utilize the system’s resources. To address this,
we propose a graph-based hardware representation scheme, which
is built upon the FLAME model [2], that enables the creation of
flexible and scalable abstractions of DH-SoC based edge-cloud sys-
tems. In this model, wires (i.e., interconnects) are represented by
edges, and any component connected to an interconnect, such as
CPU cores, memory controllers, and arithmetic logic units (ALU),
is represented by a node. We further analyze the characteristics
of different workloads under different input rates when run on
heterogeneous PUs and profile the workload’s behavior. Our work
identifies core factors to develop a performance model that captures
complex application and hardware behavior at runtime. We demon-
strate our analysis and approach on a VR application case study
using the NVIDIA Xavier NX Edge DH-SoC and a server equipped
with NVIDIA GeForce RTX 3080 GPU and AMD EPYC 7402 CPU.
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Figure 1: Graph-based hardware representation of our tar-
geted edge-cloud platform.

2 METHODOLOGY

In this section, we design novel graph-based hardware and applica-
tion representations and a modular performance modeling interface.
We generate schedules by using CEDR [11] at runtime.

2.1 Graph-based Hardware Representation

Graphs have been extensively adopted in electronic design au-
tomation (EDA) as a core tool to represent the underlying circuit
hardware [9, 10]. The most common practice is to represent logic
gates with nodes and connecting wires as edges. The resulting
graph often contains millions of nodes and edges, and efficient
use of heuristical graph algorithms during different phases of EDA
has been a heavily focused topic over decades of industrial and
academic research. On the other hand, using graph-based repre-
sentations in performance modeling to represent higher-level PUs
that operations can be mapped onto, i.e., scheduling, has not been
well studied. Representing heterogeneous systems accurately is a
challenging task due to their increasing complexity.

To address this issue, we propose a novel, multi-level-graph-
based scheme to represent the HW components in DH-SoCs. The
novelty of this approach lies in applying a graph model of hard-
ware to analytically predict its performance. This approach is also
supported by a previous work, FLAME [2], using a connected multi-
layer graph topology to describe the hierarchical interactions be-
tween multiple levels of HW abstraction.

In Figure 1, we illustrate an example graph-based representation
of an off-the-shelf edge-cloud platform. Nodes are used to represent
different elements of the system, which are a CPU cores, memory el-
ements, bus controller, network port to the server, domain-specific
accelerators, or any other element of a connected computing system.
Every node is accompanied by information about the computing
element, known as traits. The traits required for each hardware
model depend on the prediction method the user intends to use.
Edges, in turn, represent the physical connections in the system that
shows where information can flow. This high-level abstraction of
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the hardware design allows us to utilize multiple performance mod-
els, such as Roofline, machine learning approaches [14], analytical
approach [19].

In order to make the model more flexible with a controllable
degree of representation granularity, a HW component can be
detailed further to whatever level of specification the user desires to
specify. As illustrated in Figure 1, the graph-based model is flexible
enough to represent the detail levels including multiple levels of
cache and down to the core-level representation of a Carmel CPU.
This level of generic abstractions of hardware components allows
the user to specify the hardware they wish to predict to the level
of details that they have access to. While, in general, specifying
with as much granularity as possible will yield a better prediction
accuracy, this may not be possible for every component in a DH-
SoC, such as black-box DSAs. Thanks to multi-layer representation
capability, we can model a system composed of components with
varying degree of HW details available to the public.

2.2 Generalized Application Representation

Our model assumes that applications are broken down into smaller
tasks. Tasks are made up of two major parts, a list of attributes and
a list of dependencies. Figure 2 shows an example of an application
model, stored as a JSON File. Each task is an example of our case
study cloud rendering VR project, which will be elaborated on in
Section 3. The attributes are summarized as a list of PUs the task can
run and the execution time when the task runs on that particular PU
(indexes are aligned with PU entry), and the dependencies among
tasks. Our scheduler opts for which task will be executed on which
device, as explained in Section 2.3. Dependencies can be arranged
into a CFG and all CFGs should be directed acyclic graphs (DAG).
A CFG contains one source and one sink to indicate a clear process
start and exit. The direction of a CFG is used to show the flow
of tasks, while the acyclic nature is necessary to prevent cyclic
dependencies.

{"Xavier NX & Edge profiling":{
"Start":{
"depends":[]
3,
"Motion Prediction":{
"PU" :[CPU, GPUJ,
"time":["279ms", "75ms"],
"depends":["start"]
3,
"Client Networking":{

"PU" :[CPU],
"time":["0.253ms"],
"depends" : ["Motion Prediction"]

3
"Server Rendering+Encode":{

"PU" :[Cloud CPUJ,

"time":["26.2ms"],

"depends" : ["Client Networking"]
3,
"Client Decode":{

"PU" :[CPU, GPUJ,

"time" : ["3.26", "0.5ms"],

"depends" : ["Server Rendering"]
3,
"Client Reproject":{

"PU" :[CPU(cv), CPU(vpi), GPU(vpi), VIC 1,

"time" : ["46.47ms", "61.37ms", "65.63ms", "79.68ms"],

"depends" : ["Server Rendering"]

3,
}

Figure 2: An example application model for cloud-based VR
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Many other attributes (such as arithmetic intensity, memory
access amounts, memory throughput, input type and size, etc.) are
omitted for the sake of simplicity. Arithmetic intensity is useful
for roofline prediction whereas we also utilize memory throughput
to detect memory contention by adapting the model proposed by
PCCS [25]. This model represents the slowdown encountered by
each PU based on the external memory pressure created by other
processors.

Cost Function (Traverser): The traverser is the top-level function
bringing the hardware and application model together to drive the
predictions. The traverser is developed to determine and manage the
set of tasks available to run and execute them on the machine model.
A task is determined as available to run when all of its dependencies
are met. From the list of available tasks, the traverser assigns as
many of these tasks as possible to match with compatible PUs.
The traverser stops assigning tasks when it runs out of available
PUs or tasks available to assign. The traverser then calls the predict
function with the set of assigned tasks and the hardware model. The
predict function is designed to support multiple kinds of prediction
including the Roofline prediction model [24], hardware profiling,
and PCCS contention modeling [25]. The prediction will return
how long it would take for each task to finish executing on the
given resources (not only PUs but also other hardware components
affecting the execution time) it is assigned to. The quickest task
to execute is removed from the available tasks and all tasks that
are running are updated with a completion percentage. Then, the
traverser repeats the cycle of finding new available tasks, assigning,
and predicting until all tasks are completed. The traverser replaces
the cost functions produced by analytical models. Our traverser is
called every time the scheduling algorithm needs to calculate the
completion time of a subset of the CFG. Overall, the traverser is
responsible to account for varying amounts of slowdowns during
the lifetime of tasks at runtime.

2.3 Runtime Environment

To realistically study the impact of different task scheduling deci-
sions on a heterogeneous pool of resources, there is a need for a
heterogeneous runtime framework that can be deployed on off-the-
shelf SoCs. This runtime should enable users to study the impact
of scheduling policies on execution latency, as well as resource and
memory contention. In addition, this framework should be flexible
and adaptable to integrate novel scheduling heuristics based on the
predictions derived from the traverser, such that scheduling can be
performed at runtime. We leverage the Compiler-integrated Exten-
sible DH-SoC Runtime (CEDR 1) for this purpose. CEDR [11] is a
Linux-based runtime management environment, enabling seamless
execution of real-world applications on heterogeneous resource
pools over commercial off-the-shelf SoC platforms such as Xilinx
ZCU102 MPSoC, NVIDIA Jetson AGX, and Odroid XU4. CEDR be-
ing implemented in the Linux user-space provides portability across
a wide range of platforms, minimizing migration efforts for the in-
volved developers. With this runtime in place, we perform rapid
scheduling heuristics and diverse workload compositions. We can
craft execution scenarios such that certain applications are assigned

! Available at: https://github.com/UA-RCL/CEDR
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to run on a specific subset of available PUs of the platform. On the
other hand, we can also emulate execution scenarios with maxi-
mum available PUs and allow all applications to run unconstrained
on any of these resources. Furthermore, the existing schedulers in
CEDR allow us to study the impact of different scheduling decisions
at the CFG node level. Under different application execution scenar-
ios, we can study the impact/overhead of migrating a node of an
application to a different resource (local, or remote server), using
the available hardware (PAPI) counters. These counters provide a
profile of execution latency and memory access overhead in terms
of instruction and cycle counts, cache loads, and misses, enabling
in-depth analysis of application node execution.

CEDR has also been deployed in an environment with edge-
based frontend and cloud-based backend compute capability for
data science workflows [20]. In order to meet the individual perfor-
mance requirements of multiple dynamically arriving data science
pipelines, the resource manager needs to have a global view of the
system resources along with data transfer cost between system
resources to be able to determine the modality of the execution
and decide whether a specific task in a given workflow should be
executed on the resource-limited edge node or resource-rich cloud
compute node. CEDR, when deployed as a middleware between
the edge and cloud-based compute nodes, provides the schedulers
with expected data communication between front and backend by
processing the overhead of a node on heterogeneous PUs along
with resource status to identify congestion. This allows seamlessly
launching a given task in a workflow on local resources or initiating
the process of sending the task and its data to the remote platform
for processing. With this dynamic front and backend scheduling and
processing capability, CEDR offers to realize a multi-level cloud-
edge execution platform that is able to utilize system resources
effectively while meeting the performance constraints of scientific
workflows.

3 CLOUD-BASED VR RENDERING
3.1 Motivation

Virtual reality (VR) rendering has been a hot topic in immersive
entertainment, architecture visualization, etc. One of the most im-
portant bottlenecks in VR applications is the massive hardware
and real-time performance demands while also maintaining a high-
fidelity experience. To achieve this, we design a Cloud Rendering
VR project to apply our hardware and application representation
and evaluate our methodology in this scenario. In this scenario, we
offload heavy-duty frame rendering jobs to a cloud-based server
and ship the rendered frames back to an edge device in real time. Us-
ing this technique, a very high-fidelity experience can be achieved
while keeping hardware costs down, however the primary issue
with this approach is the latency induced. In order to offset the
latency, we employ speculative rendering, where we pre-render
the upcoming frames by predicting upcoming user inputs. The in-
puts are assumed to be provided via human body pose, which is a
commonly used technique in VR-based applications.

3.2 Implementation

For the implementation, we use NVIDIA Xavier NX Edge DH-SoC as
an edge device and a server system equipped with NVIDIA GeForce
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Figure 3: High-level architecture of cloud-based VR rendering

RTX 3080 GPU and AMD EPYC 7402 CPU. The CFG and the tasks
assigned to the edge device and the server are illustrated in Figure 3.
For our architecture, we start the execution by using a long short
term memory (LSTM)-based machine learning model [12] for gen-
erating human full body pose predictions in the near time periods,
learning from recent sensor data and prior bodily positions. This
model, called the pose predictor, outputs statistical distributions
for bone orientations in BODY25 format, then computes the final
relative space rotation and orientation of the human head. This
predicted orientation of the human head is then forwarded to our
next component, the client. The client handles all interfacing with
the server, so it begins by sending the latest motion information
from the client over to the server for rendering. In parallel, it con-
tinuously downloads a compressed stream of fully rendered frames
produced on the server, where it will then decode and perform a spa-
tial reprojection to compensate for prediction discrepancies. This
spatial reprojection step is comprised of running the perspective
warp algorithm on the frame, followed by a cropping operation, in
order to hide mispredictions. Since this stage happens on the client,
we sample the latest headset pose data using local sensors, and
use this information for our spatial warp. Lastly, the reprojected
frame can then be displayed to the user. In the server component,
we capture in motion information from the client, update the game
or simulation state accordingly, and then render a new frame and
send it over the network to the client after performing H.264 com-
pression.

3.3 Computational Heterogeneity

In order to deploy our real-time use case on the diversely hetero-
geneous computing hardware, we need to adaptively change the
execution schedule of our solution in real-time. In Figure 2, we
demonstrate an example scheduling configuration for this project
that displays all of the various execution platform options we have
for each individual component involved. Looking at the client de-
coding piece, we can see that we have opportunities to run our H.264
frame decoding stage on either the CPU or by using a hardware
decoder (NvDec for Xavier NX). We separately mark the available
common PUs (such as CPU or GPU) as the cloud’s PU. The choice
between using each largely depends on computing resources avail-
able to the given platform, earliest finish time, shared or dedicated
memory, etc. On the NVIDIA Xavier NX device, there is a shared
memory fabric interconnecting all of the system’s accelerators, so
choosing to send the frame data to the NvDec accelerator and back
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has contention slowdown that can change how we schedule the
component and others on the system.

3.4 Results

The Cloud Rendering VR project highlights a real-world use case
and applicable to our heterogeneous modeling solution. In our
testing, we observed that there is a non-linear scaling relationship
between the different accelerators available on the Xavier NX DH-
SoC, as seen in Figure 4. From this data, we can further assist our
scheduling decisions to optimize for a broader range of hardware.
We observe that using dynamic and adaptive scheduling for our
various compute tasks shows promise as a means of deploying
to wide range of real hardware. We believe that continuing with
this work and creating more scheduling options for tasks such as
our motion prediction or frame decoding stages will enable more
effective means of execution on all platforms.

* VIC time (ms) 4 CUDA time (ms) ¢ CPU time (ms)
150
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o
o
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768x480  1280x720 1536x864 1920x1080 2560x1440
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Figure 4: Effect of rendering resolution sizes on reprojection
latency, measured on the Xavier NX platform

4 CONCLUSION

Diversely heterogeneous Systems-on-chips (SoCs) are gaining pop-
ularity in emerging areas such as autonomous driving and AR/VR
applications, primarily due to their high performance and energy
efficiency. In this work, we examine mapping concurrently running
workloads to a range of accelerators demands a meticulous mod-
eling of performance, including consideration of contention. We
present a graph-based hardware model and a query-based applica-
tion model. We evaluate our methodology on a realistic cloud-based
VR rendering scenario.
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